Skip to main content

Advertisement

Log in

N-glycan structures and downstream mannose-phosphorylation of plant recombinant human alpha-l-iduronidase: toward development of enzyme replacement therapy for mucopolysaccharidosis I

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy.

Abstract

Functional recombinant human alpha-l-iduronidase (IDUA; EC 3.2.1.76) enzymes were generated in seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) C5 background, which is deficient in the activity of N-acetylglucosaminyl transferase I, and in seeds of the Arabidopsis gm1 mutant, which lacks Golgi α-mannosidase I (GM1) activity. Both strategies effectively prevented N-glycan maturation and the resultant N-glycan structures on the consensus sites for N-glycosylation of the human enzyme revealed high-mannose N-glycans of predominantly Man5 (cgl-IDUA) or Man6−8 (gm1-IDUA) structures. Both forms of IDUA were equivalent with respect to their kinetic parameters characterized by cleavage of the artificial substrate 4-methylumbelliferyl-iduronide. Because recombinant lysosomal enzymes produced in plants require the addition of mannose-6-phosphate (M6P) in order to be suitable for lysosomal delivery in human cells, we characterized the two IDUA proteins for their amenability to downstream in vitro mannose phosphorylation mediated by a soluble form of the human phosphotransferase (UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine [GlcNAc]-1-phosphotransferase). Gm1-IDUA exhibited a slight advantage over the cgl-IDUA in the in vitro M6P-tagging process, with respect to having a better affinity (i.e. lower K m) for the soluble phosphotransferase. This may be due to the greater number of mannose residues comprising the high-mannose N-glycans of gm1-IDUA. Our elite cgl- line produces IDUA at > 5.7% TSP (total soluble protein); screening of the gm1 lines showed a maximum yield of 1.5% TSP. Overall our findings demonstrate the relative advantages and disadvantages associated with the two platforms to create enzyme replacement therapeutics for lysosomal storage diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696

    Article  CAS  PubMed  Google Scholar 

  • Bao M, Booth JL, Elmendorf BJ, Canfield WM (1996) Bovine UDP-N-acetylglucosamine: lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase. I. Purification and subunit structure. J Biol Chem 271:31437–31445

    Article  CAS  PubMed  Google Scholar 

  • Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE et al (1991) Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher’s disease. New Engl J Med 324:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dor S, Esterman N, Rubin E, Sharon N (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiol 14:95–101

    Article  CAS  Google Scholar 

  • Bie H, Yin J, He X, Kermode AR, Goddard-Borger ED, Withers SG, James MNG (2013) Insights into mucopolysaccharidosis I from the structure and action of α-L-iduronidase. Nat Chem Biol 9:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793:605–614

    Article  CAS  PubMed  Google Scholar 

  • Brooks DA (2002) α-L-Iduronidase and enzyme replacement therapy for mucopolysaccharidosis I. Expert Opin Biol Ther 2:967–976

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Strasser R (2017)Production of functionally active recombinant proteins in plants: manipulating N- and O-glycosylation. In: Kermode A, Jiang L (eds) Molecular pharming: applications, challenges and emerging areas. Wiley Publishing, Hoboken

    Google Scholar 

  • Clarke LA (2008) The mucopolysaccharidoses: a success of molecular medicine. Expert Rev Mol Med 10:e1

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Couso R, Lang L, Roberts RM, Kornfeld S (1986) Phosphorylation of the oligosaccharide of uteroferrin by UDP-GlcNAc: glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum requires alpha 1, 2-linked mannose residues. J Biol Chem 261:6326–6331

    CAS  PubMed  Google Scholar 

  • Coutinho MF, Prata MJ, Alves S (2012) Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 105:542–550

    Article  CAS  PubMed  Google Scholar 

  • Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343:1235681

    Article  PubMed  Google Scholar 

  • Desnick RJ, Schuchman EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3:954–966

    Article  CAS  PubMed  Google Scholar 

  • Downing WL, Galpin JD, Clemens S, Lauzon SM, Samuels AL, Pidkowich MS, Clarke LA, Kermode AR (2006) Synthesis of enzymatically active human alpha-L-iduronidase in Arabidopsis complex glycan-deficient (cgl) seeds. Plant Biotechnol J 4:169–181

    Article  CAS  PubMed  Google Scholar 

  • Downing WL, Hu X, Kermode AR (2007) Post-transcriptional factors are important for high-level expression of the human α-L-iduronidase gene in Arabidopsis cgl (complex glycan-deficient) seeds. Plant Sci 172:327–334

    Article  CAS  Google Scholar 

  • Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30:434–439

    Article  CAS  PubMed  Google Scholar 

  • Frank J, Kaulfürst-Soboll H, Rips S, Koiwa H, von Schaewen A (2008) Comparative analyses of Arabidopsis complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a. Plant Physiol 148:1354–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galpin JD, Clemens S, Kermode AR (2010) The carboxy-terminal ER-retention motif, SEKDEL, influences the N-linked glycosylation of recombinant human α-L-iduronidase but has little effect on enzyme activity in seeds of Brassica napus and Nicotiana tabacum. Plant Sci 178:440–447

    Article  CAS  Google Scholar 

  • Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M (2007) Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Medic Chem 14:2945–2953

    Article  CAS  Google Scholar 

  • Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23:559–565

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  • He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, Von Itzstein M, Kolarich D, Packer NH, Miao Y, Jiang L, Grabowski GA, Clarke LA, Kermode AR (2012a) Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiol 22:492–503

    Article  CAS  Google Scholar 

  • He X, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Kermode AR (2012b) Influence of an ER-retention signal on the N-glycosylation of recombinant human α-L-iduronidase generated in seeds of Arabidopsis. Plant Mol Biol 79:157–169

    Article  CAS  PubMed  Google Scholar 

  • He X, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Gloster TM, Vocadlo DJ, Clarke LA, Qian Y, Kermode AR (2012c) Production of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease. Nat Commun 3:1062

    Article  PubMed  Google Scholar 

  • He X, Pierce O, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Gloster TM, Vocadlo DJ, Qian Y, Brooks D, Kermode AR (2013) Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds. Plant Biotechnol J 11:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Galpin JD, Miao Y, Jiang L, Grabowski GA, Kermode AR (2014) Membrane anchors effectively traffic recombinant human glucocerebrosidase to the protein storage vacuole of Arabidopsis seeds but do not adequately control N-glycan maturation. Plant Cell Rep 33:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Howard JA (eds) (2002) Plants as factories for protein production. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiol 19:936–949

    Article  CAS  Google Scholar 

  • Jones J, Krag SS, Betenbaugh MJ (2005) Controlling N-linked glycan site occupancy. Biochim Biophys Acta 1726:121–137

    Article  CAS  PubMed  Google Scholar 

  • Jung J-W, Huy NX, Kim H-B, Nan-Sun Kim N-S, Giap DV, Yang M-S (2017) Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol 249:42–50

    Article  CAS  PubMed  Google Scholar 

  • Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiol 20:235–247

    Article  CAS  Google Scholar 

  • Kajiura H, Wasai M, Kasahara S, Takaiwa F, Fujiyama K (2013) N-Glycosylation and N-glycan moieties of CTB expressed in rice seeds. Mol Biotechnol 54:784–794

    Article  CAS  PubMed  Google Scholar 

  • Kajiura H, Hamaguchi Y, Mizushima H, Misaki R, Fujiyama K (2015) Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active 2,6-sialyltransferase. Glycobiol 25:1441–1453

    Article  CAS  Google Scholar 

  • Kakkis E (2005) α-L-Iduronidase: the development of Aldurazyme (Laronidase). In: McGrath BM, Walsh G (eds) Directory of therapeutic enzymes. CRC Press, Taylor & Francis Group, New York, pp 239–260

    Chapter  Google Scholar 

  • Kasturi L, Eshleman JR, Wunner WH, Shakin-Eshleman SH (1995) The hydroxy amino acid in an Asn-X-Ser/Thr sequon can influence N-linked core glycosylation efficiency and the level of expression of a cell surface glycoprotein. J Biol Chem 270:14756–14761

    Article  CAS  PubMed  Google Scholar 

  • Kermode AR (2012) Seed expression systems for molecular farming. In: Wang A, Ma S (eds) Molecular farming in plants: recent advances and future prospects. Springer, New York, pp 89–123

    Chapter  Google Scholar 

  • Kermode AR, Zeng Y, Hu X, Lauson S, Abrams SR, He X (2007) Ectopic expression of a conifer Abscisic Acid Insensitive3 transcription factor induces high-level synthesis of recombinant human α-L-iduronidase in transgenic tobacco leaves. Plant Mol Biol 63:763–776

    Article  CAS  PubMed  Google Scholar 

  • Kermode AR, McNair G, Pierce O (2017) Plant recombinant lysosomal enzymes as replacement therapeutics for lysosomal storage diseases: unique processing for lysosomal delivery and efficacy. In: Kermode A, Jiang L (eds) Molecular pharming: applications, challenges and emerging areas. Wiley Publishing, Hoboken

    Google Scholar 

  • Ketcham CM, Kornfeld S (1992) Characterization of UDP-N-acetylglucosamine: glycoprotein N-acetylglucosamine-1-phosphotransferase from Acanthamoeba castellanii. J Biol Chem 267:11654–11659

    CAS  PubMed  Google Scholar 

  • Kim JJP, Olson LJ, Dahms NM (2009) Carbohydrate recognition by the mannose-6-phosphate receptors. Curr Opin Structural Biol 19:534–542

    Article  CAS  Google Scholar 

  • Kudo M, Canfield WM (2006) Structural requirements for efficient processing and activation of recombinant human UDP-N-acetylglucosamine: lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase. J Biol Chem 281:11761–11768

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Bao M, D’Souza A, Ying F, Pan H, Roe BA, Canfield WM (2005) The α- and β-subunits of the human UDP-N-acetylglucosamine: lysosomal enzyme phosphotransferase are encoded by a single cDNA. J Biol Chem 280:36141–36149

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Payne BJ, Gelfma CM, Vogel P, Kornfeld S (2007) Murine UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase lacking the gamma-subunit retains substantial activity toward acid hydrolases. J Biol Chem 282:27198–27203

    Article  CAS  PubMed  Google Scholar 

  • Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert GJ, Altmann F, Mach L, Strasser R (2009) Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Lee W-S, Doray B, Kornfeld S (2017) Engineering of GlcNAc-1-phosphotransferase for production of highly phosphorylated lysosomal enzymes for enzyme replacement therapy. Molec Ther 5:59–65

    CAS  Google Scholar 

  • Loos A, Steinkellner H (2017) Plant-produced antibodies and posttranslational modification.In: Kermode A, Jiang L (eds) Molecular pharming: applications, challenges and emerging areas. Wiley Publishing, Hoboken

    Google Scholar 

  • Maita N, Tsukimura T, Taniguchi T, Saito S, Ohno K, Taniguchi H, Sakuraba H (2013) Human α-L-iduronidase uses its own N-glycan as a substrate-binding and catalytic module. Proc Natl Acad Sci USA 110:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxmen A (2012) Drug-making plant blooms. Nature 485:160

    Article  CAS  PubMed  Google Scholar 

  • Munro S (2001) The MRH domain suggests a shared ancestry for the mannose-6-phosphate receptors and other N-glycan-recognising proteins. Current Biol 11:R499–R501

    Article  CAS  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Lee I, Lee WS, Qian M, Kudo M, Canfield WM, Lobel P, Kornfeld S (2010) Functions of the alpha, beta, and gama subunits of UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. J Biol Chem 285:3360–3370

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott HS, Bunge S, Gal A, Clarke LA, Morris CP, Hopwood JJ (1995) Molecular genetics of mucopolysaccharidosis type I: diagnostic, clinical, and biological implications. Hum Mutat 6:288–302

    Article  CAS  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Shen JS, Busch A, Day TS, Meng XL, Yu CI, Dabrowska-Schlepp P, Fode B, Niederkrüger H, Forni S, Chen S, Schiffmann R, Frischmuth T, Schaaf A (2016) Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J Inherit Metab Dis 39:293–303

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Nakata M, Kuroda Y, Tsutsumi F, Kojima N, Mizuochi T (2001) Rapid and simple preparation of N-linked oligosaccharides by cellulose-column chromatography. Carbohydr Res 332:381–388

    Article  CAS  PubMed  Google Scholar 

  • Stahl PD, Ezekowitz RA (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10:50–55

    Article  CAS  PubMed  Google Scholar 

  • Van Meel E, Lee WS, Liu L, Qian Y, Doray B, Kornfeld S (2016) Multiple domains of GlcNAc-1-phosphotransferase mediate recognition of lysosomal enzymes. J Biol Chem 291:8295–8307

    Article  PubMed  PubMed Central  Google Scholar 

  • Varki A, Kornfeld S (1980) Structural studies of phosphorylated high mannose-type oligosaccharides. J Biol Chem 255:10847–10858

    CAS  PubMed  Google Scholar 

  • Varki A, Sherman W, Kornfeld S (1983) Demonstration of the enzymatic mechanisms of α-N-acetyl-D-glucosamine-1-phosphodiester N-acetylglucosaminidase (formerly called α-N-acetylglucosaminylphosphodiesterase) and lysosomal α-N-acetylglucosaminidase. Arch Biochem Biophys 222:145–149

    Article  CAS  PubMed  Google Scholar 

  • von Schaewen A, Sturm A, Oneill J, Chrispeels MJ (1993) Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase-I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol 102:1109–1118

    Article  Google Scholar 

  • Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30:410–418

    Article  CAS  PubMed  Google Scholar 

  • Weinreb NJ, Goldblatt J, Villalobos J, Charrow J, Cole JA, Kerstenetzky M, vom Dahl S, Hollak C (2013) Long-term clinical outcomes in type 1 Gaucher disease following 10 years of imiglucerase treatment. J Inherit Metab Dis 36:543–553

    Article  CAS  PubMed  Google Scholar 

  • Wilson IBH, Harthill JE, Mullin NP, Ashford DA, Altmann F (1998) Core alpha1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiol 8:651–661

    Article  CAS  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  PubMed  Google Scholar 

  • Zhao KW, Faull KF, Kakkis ED, Neufeld EF (1997) Carbohydrate structures of recombinant human alpha-L-iduronidase secreted by Chinese hamster ovary cells. J Biol Chem 272:22758–22765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Hopwood for the anti-IDUA antibodies and Dr. Stuart Kornfeld for the recombinant GlcNAc-1-phosphotransferase (α2β2). This work was funded by a Michael Smith Foundation for Health Research Senior Scholar Award to ARK and by a Canadian Glycomics Network for Centres of Excellence (GlycoNet) Grant 280013 (10.13039/501100009056).

Author information

Authors and Affiliations

Authors

Contributions

HK and KF performed the N-glycan analyses, and wrote the associated methods; OMP, XH, and GRM performed all other experiments and/or analyzed the data; ARK conceived the project, supervised experiments and wrote the article with contributions of authors GRM and OMP.

Corresponding author

Correspondence to Allison R. Kermode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, O.M., McNair, G.R., He, X. et al. N-glycan structures and downstream mannose-phosphorylation of plant recombinant human alpha-l-iduronidase: toward development of enzyme replacement therapy for mucopolysaccharidosis I. Plant Mol Biol 95, 593–606 (2017). https://doi.org/10.1007/s11103-017-0673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0673-x

Keywords

Navigation