Skip to main content

Advertisement

Log in

In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105 °C and only residual catalytic activity at temperatures below 70 °C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35 °C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agharkar M, Lomba PN, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5:791–801

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomas-Pejo E, Negro MJ, Ballesteros M (2011) Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw. Biotechnol Prog 27:944–950

    Article  CAS  PubMed  Google Scholar 

  • Arencibia A, Vázquez R, Prieto D, Téllez P, Carmona E, Coego A, Hernández L, de la Riva G, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem-borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Bae HJ, Lee DS, Hwang I (2006) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169

    Google Scholar 

  • Bae HJ, Kim HJ, Kim YS (2008) Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications. Bioresource Technol 99:3513–3519

    Article  CAS  Google Scholar 

  • Basso TP, Basso TO, Gallo CR, Basso LC (2013) Towards the production of second generation ethanol from sugarcane bagasse in Brazil. In: Matovic MD (ed) Biomass now—cultivation and utilization, InTech. doi:10.5772/54179.http://www.intechopen.com/books/biomass-now-cultivation-and-utilization/towards-the-production-of-second-generation-ethanol-from-sugarcane-bagasse-in-brazil

  • Bevan M (1984) A new Agrobacterium vector for plant transformation. Heredity 53:577–578

    Google Scholar 

  • Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  PubMed  Google Scholar 

  • Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Paes Leme AF, Squina FM, Buckeridge M, Goldman GH, Oliveira JV (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS ONE. doi:10.1371/journal.pone.0129275

    PubMed  PubMed Central  Google Scholar 

  • Buckeridge M, de Souza AP (2014) Breaking the “Glycomic Code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. Bioenergy Res 7:1065–1073

    Article  CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol 37:434–439

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanase, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Hooker BS, Quesenberry RD, Thomas SR (2005) Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 14:627–643

    Article  CAS  PubMed  Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • Dias MOS, da Cunha MP, Filho RM, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38:955–966

    Article  CAS  PubMed  Google Scholar 

  • Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driss D, Bhiri F, Ghorbel R, Chaabouni SE (2012) Cloning and constitutive expression of His-tagged xylanase GH11 from Penicillium occitanis Pol6 in Pichia pastoris X33: purification and characterization. Protein Expr Purif 83:8–14

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colormetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gibbs MD, Reeves RA, Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreame thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61:4403–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray BN, Bougri O, Carlson AR, Meissner J, Pan S, Parker MH, Zhang D, Samoylov V, Ekborg NA, Raab RM (2011) Global and grain-specific accumulation of glycoside hydrolase family 10 xylanase in transgenic maize (Zea mays). Plant Biotechnol J 9:1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Bach IC, Lind-Bouquin S, Nunan KJ, Madrid SM, Brinch-Pederson H, Holm PB, Scheller HV (2010) Generation of transgenic wheat (triticum aestivum L.) accumulating heterologous endo-xalanase or ferulic acid esterase in endosperm. Plant Biotechnol J 8:351–362

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugarcane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  • Harrison MD, Geijskes RJ, Lloyd R, Miles S, Palupe A, Sainz MB, Dale JL (2014) Recombinant cellulase accumulation in the leaves of mature, vegetatively propagated transgenic sugarcane. Mol Biotechnol 56:795–802

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lin J, Ye X, Wang G (2015) Molecular characterization of a thermophilic and salt- and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a soda lake. J Microbiol Biotechnol 25:662–771

    Article  CAS  PubMed  Google Scholar 

  • Ihsanawati TK, Kaneko T, Morokuma C, Yatsunami R, Sato T, Nakamura S, Tanaka N (2005) Structural basis of the substrate and the highly thermal stability of xylanase 10B from Themotoga maritima MSB8. Proteins 61:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  PubMed  Google Scholar 

  • Jagger A (2009) Brazil invests in second-generation biofuels. Biofuels, Bioprod Bioref 3:8–10

    Article  CAS  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREBIA transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances biotic stress tolerance. Transgenic Res 17:93–104

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Flavell RA (1977) A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7:337–342

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SR, Kim S, Bae H, Lim H-S, Bae H-J (2010) Expression of thermostable bacterial β-glucosidase (BglB) in transgenic tobacco plants. Bioresour Technol 101:7144–7150

    Article  CAS  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increase fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F (2016) Precision breeding for RNAi suppression of a major 4-coumarate: coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol 92:505–517

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee D-S, Choi IS, Ahn S-Y, Kim YH, Bae H-J (2010) Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19:489–497

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kavas M, Fouad WM, Nong G, Preston JF, Altpeter F (2011) Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Mol Biol 76:357–369

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Mizutani T, Sun J-L, Kawazu T, Karita S, Sakka M, Kobayashi Y, Ohmiya K, Sakka K (2010) Stable production of thermotolerant xylanase B of Clostridium stercorarium in transgenic tobacco and rice. Biosci Biotechnol Biochem 74:954–960

    Article  CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1097

    Article  CAS  PubMed  Google Scholar 

  • Klose H, Roder J, Girfoglio M, Fischer R, Commandeur U (2012) Hyperthermophilic endoglucanase for in planta lignocellulose conversion. Biotechnol Biofuels 5:1–9

    Article  Google Scholar 

  • Krishnan C, Sousa LC, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107:441–450

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Kuijper J (1915) DeGroei van Bladschijf, Bladscheede en Stengel van het suikerriet. Arch Suikerind Ned- Indie 23:528–556

    Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  PubMed  Google Scholar 

  • Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67

    Article  CAS  Google Scholar 

  • Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z (2014a) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265

  • Li Q, Song J, Peng S, Wang JP, Qu G-Z, Sederoff RR, Chiang VL (2014b) Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J 12:1174–1192

  • Macedo IC (1992) The sugar cane agro-industry and its contribution to reducing CO2 emissions in Brazil. Biomass Bioenergy 3:77–80

    Article  Google Scholar 

  • Mir BA, Mewalal R, Mizrachi E, Myburg AA, Cowan DA (2014) Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends Biotechnol 32:281–289

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2007) Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand. Energ Policy 35:4585–4596

    Article  Google Scholar 

  • Nong G, Rice JD, Chow V, Preston JF (2009) Aldouronate utilization in Paenibacillus sp. strain JDR-2: physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism. Appl Environ Microbiol 75:4410–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    Article  CAS  PubMed  Google Scholar 

  • Preston JF, Hurlbert JC, Rice JD, Ragunathan A, St John FJ (2003) Microbial strategies for the depolymerization of glucuronoxylan: leads to the biotechnological applications of endoxylanases. In: Mansfield SD, Saddler JN (eds) Application of enzymes to lignocellulosics (ACS symposium series no. 855), pp 191–210

  • Rhee MS, Wei L, Sawhney N, Kim YS, Rice JD, Preston JF (2016) Metabolic potential of Bacillus subtilis 168 for the direct conversion of xylans to fermentation products. Appl Microbiol Biotechnol 100:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). Plant Cell Rep 27:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Sun X, Zuo X, Shilling T, Apgar J, Ross M, Bougri O, Samoylov V, Parker M, Hancock E, Lucero H, Gray B, Ekborg NA, Zhang D, Johnson JCS, Lazar G, Raab RM (2012) Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing. Nat Biotechnol 30:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Tavares EQP, de Souza AP, Buckeridge MS (2015) How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. J Exp Bot 66:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • UN-Energy (2011) Ethanol fuel in Brazil. http://www.un-energy.org/stories/38-ethanol-fuel-in-brazil

  • van Rijs J, Giguère V, Hurst J, van Agthoven T, van Kessel AG, Goyert S, Grosveld F (1985) Chromosomal localization of the human Thy-1 gene. Proc Natl Acad Sci USA 82:5832–5835

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AG, Thomas JR, Kamerling JP, Vliegenthart JF (1998) Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res 306:265–274

    Article  CAS  PubMed  Google Scholar 

  • von Schaewen A, Stitt M, Schimidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrates and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    Article  PubMed  Google Scholar 

  • Weng LX, Deng H, Xu JL, Li Q, Wang LH, Jiang Z, Zhang HB, Li Q, Zhang LH (2006) Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Manag Sci 62(:):178–187

    Article  CAS  PubMed  Google Scholar 

  • Werneke JM, Ogren WL (1989) Structure of an Arabidopsis thaliana cDNA encoding rubisco activase. Nucleic Acids Res 17:2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Awan FS, Vilarinho A, Zeng Q, Kannan B, Phipps T, McCuiston J, Wang W, Caffall K, Altpeter F (2015) Transgene integration complexity and expression stability following biolistic or Agrobacterium-mediated transformation of sugarcane. In Vitro Cell Dev Biol Plant 51:603–611

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 25:333–339

    Article  CAS  PubMed  Google Scholar 

  • Ziegler MT, Thomas SR, Danna KJ (2000) Accumulation of a thermostable endo-1,4-β-d-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breed 6:37–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank USDA-NIFA (Grant #2009-10001-05117) and Syngenta Biotechnology Inc. for their financial support of this research, Dr. Rob Gilbert University of Florida-IFAS, EREC, Belle Glade FL for providing donor plants of sugarcane cultivar CP88-1762 and Sun Gro Horticulture, Apopka, FL for donation of the Fafard #2 potting mix.

Author contributions

F.A., M.G. and J.F.P. conceived the experiments. F.A., J.Y.K. and J.F.P. designed the experiments. J.Y.K. constructed the plasmids, generated transgenic plants, completed molecular analysis of transgenic plants, analysis of Xyl10B activity, specific activity and total yield from different tissues and greenhouse propagation of transgenic plants (data shown in Figs. 1, 2 and Supplementary Fig. 1, Tables 1, 2, Supplementary Table1), G.N. and J.Y.K. analyzed the depolymerization of sugarcane xylan by Xyl10B, α-glucuronidase (AguA) and α-arabinofuranosidase (AbfA) (data shown in Fig. 3), J.D.R. generated the temperature response data of in planta produced Xyl10B shown in Fig. 4. J.Y.K., J.F.P. and F.A. wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Nong, G., Rice, J.D. et al. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. Plant Mol Biol 93, 465–478 (2017). https://doi.org/10.1007/s11103-016-0573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0573-5

Keywords

Navigation