Skip to main content
Log in

Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal N, Sachdev B, Rodrigues J, Sowjanya Sree K, Bhatnagar RK (2013) Development associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA. Sci Rep 3:2292

    PubMed  PubMed Central  Google Scholar 

  • Ahmad T, Rajagopal R, Bhatnagar RK (2003) Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochem Biophys Res Commun 310:188–195

    Article  PubMed  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Asokan R, Chandra GS, Manamohan M, Kumar NK (2013) Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera. Bull Entomol Res 103:555–563

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Belles X (2010) Beyond Drosophila RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128

    Article  PubMed  CAS  Google Scholar 

  • Blattner R, Gerard PJ, Spindler-Barth M (1997) Synthesis and biological activity of allosamidin and allosamidin analogues. Pestic Sci 50:312–318

    Article  CAS  Google Scholar 

  • Brooks E, Hines E (1999) Viral biopesticides for heliothine control: fact or fiction. Todays Life Sci 11:38–44

    Google Scholar 

  • De Oliveira CFR, Luz LA, Paiva PMG, Coelho L, Marangoni S, Macedo MLR (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem 46:498–504

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423

    Article  PubMed  CAS  Google Scholar 

  • Fukamizo T, Kramer KJ (1985) Mechanism of chitin oligosaccharide hydrolysis by the binary chitinase system in insects moulting fluid. Insect Biochem 15:141–145

    Article  CAS  Google Scholar 

  • Garbutt JS, Belles X, Richards EH, Reynolds SE (2013) Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. J Insect Physiol 59:171–178

    Article  PubMed  CAS  Google Scholar 

  • Geley S, Muller C (2004) RNAi: ancient mechanism with a promising future. Exp Gerontol 39:985–998

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding nine billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Gupta GP, Birah A, Rani S (2004) Development of artificial diet for mass rearing of American bollworm, Helicoverpa armigera. Indian J Agric Sci 74:548–551

    Google Scholar 

  • Gupta A, Pal RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J Plant Physiol 170:987–995

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotech J 13:435–446

    Article  CAS  Google Scholar 

  • Kranthi KR, Jadhavb DR, Kranthia S, Wanjaria RR, Alia SS, Rusel DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    Article  CAS  Google Scholar 

  • Kumar M (2011) RNAi-mediated targeting of acetylcholinesterase gene of Helicoverpa armigera for insect resistance in transgenic tobacco and tomato. PhD thesis, University of Delhi

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Li X, Zhang M, Zhang H (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS ONE 6:e17788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu F, Wang XD, Zhao YY, Li YJ, Liu YC, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livark K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 25:402–408

    Article  Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  Google Scholar 

  • Madhulatha P, Pandey R, Hazarika P, Rajam MV (2007) High transformation frequency in Agrobacterium mediated genetic transformation of tomato by using polyamines and maltose in shoot regeneration medium. Physiol Mol Biol Plants 13:191–198

    CAS  Google Scholar 

  • Malone LA, Gatehouse AMR, Barratt BIP (2008) Beyond Bt: alternative strategies for insect-resistant genetically modified crops. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Amsterdam, pp 357–417

    Chapter  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Miller SC, Miyata K, Brown SJ, Tomoyasu Y (2012) Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS One 7:e47431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin metabolism in insects. In: Gilbert LI (ed) Comprehensive molecular insect science. Elsevier Academic Press, San Diego, pp 193–235

    Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:420–1428

    Article  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS ONE 6:e25709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qu M, Li Ma, Chen P, Yang Q (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13:2931–2940

    Article  PubMed  CAS  Google Scholar 

  • Rajam MV (2011) RNA interference: A new approach for the control of fungal pathogens and insects: In: Proceedings of the national symposium on ‘genomics and crop improvement: relevance and reservations’, Institute of Biotechnology, Acharya NG Ranga Agricultural University, Hyderabad, pp 220–229

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A (1987) Search for microbial insect growth regulators II Allosamidin, a novel insect chitinase inhibitor. J Antibiot 40:296–300

    Article  PubMed  CAS  Google Scholar 

  • Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniates T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Senthilkumar R, Cheng CP, Yeh KW (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J 8:65–75

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC (2001) Cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera): biology and management. Crop Protection Compendium, Commonwealth Agricultural Bureau International, Oxon

    Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  PubMed  CAS  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I et al (2011) RNA interference in lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • Terra WR (2001) The origins and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  PubMed  CAS  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Dong Y, Desneux N, Niu C (2013) RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm. PLoS One 8:e67732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D (2013) Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Intl J Biol Sci 9:370–381

    Article  Google Scholar 

  • Zhang D, Chen J, Yao Q, Pan Z, Zhang W (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105:6650–6655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466

    Article  PubMed  CAS  Google Scholar 

  • Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect associated gene EcR. PLoS ONE 7:e38572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Biotechnology (Grant No. BT/AGR/TF/2006), New Delhi and Sri Biotech Laboratory India Ltd. Hyderabad for financial assistance (to MVR). Mamta acknowledges the University Grants Commission, New Delhi for the senior research fellowship under the special assistance programme (SAP) of University Grants Commission (UGC). We also thank the UGC for SAP (DRS-III), Department of Science and Technology (DST), New Delhi for FIST (Level 2) programme and DU-DST PURSE (Phase II) Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rajam.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Similarity of selected HaCHI sequences [approximately 144 bp] with Spodoptera spp. and other insects (JPEG 97 kb)

Supplementary Fig. 2

Generation and molecular analyses of HaCHI-RNAi tobacco and tomato plants. (a) T-DNA map of HaCHI-RNAi construct, harbouring partial HaCHI cDNA in sense (S-CHI) and antisense (AS-CHI) orientation. 35S P- CaMV 35S promoter, NPT-II- Neomycin phosphotransferase, Intron- Chalcone synthase intron, LB- Left border, RB- Right border; Confirmation of transgene presence in primary HaCHI-RNAi tobacco (b) and tomato (c) transformants by PCR analysis with HaCHI and NPT-II gene-specific primers. M- 100 bp and 1 kb DNA ladder, B- Blank control (PCR without DNA), P- positive control (PCR with plasmid of HaCHI-RNAi vector), UT- Untransformed control, RNAi 13 to 80 are independent HaCHI-RNAi tobacco lines, RNAi 1 to 12 are independent HaCHI-RNAi tomato lines. Determination of transgene copy number by Southern blot hybridization in EcoRI digested genomic DNA from untransformed control and HaCHI-RNAi tobacco (d) and tomato (e) lines probed with radiolabeled probe prepared from partial coding sequence of NPT-II gene. UT- Untransformed control, RNAi 13 to 80 are independent HaCHI-RNAi tobacco lines, RNAi 2 to 22 are independent HaCHI-RNAi tomato lines (JPEG 132 kb)

Supplementary Fig. 3

Initial screening of different HaCHI-RNAi tobacco and tomato lines for insect resistance, based on detached leaf feeding bioassay. Mortality based initial screening of different HaCHI-RNAi tobacco (a) and tomato (b) lines for resistance against H. armigera, Data represent mean percentage mortality ± SE from three independent experiments with n=10 larvae per experiment, UT- Untransformed plant, RNAi 4 to 88 are independent HaCHI-RNAi tobacco lines, RNAi 1 to 38 are independent HaCHI-RNAi tomato lines. *Represent significant differences between HaCHI-RNAi lines and UT (P< 0.05) (JPEG 133 kb)

Supplementary material 4 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamta, Reddy, K.R.K. & Rajam, M.V. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90, 281–292 (2016). https://doi.org/10.1007/s11103-015-0414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0414-y

Keywords

Navigation