Skip to main content
Log in

Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt71) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OPT:

Oligopeptide transporter

Fe:

Iron

References

  • Bashir K, Nishizawa NK (2006) Deoxymugineic acid synthase: a gene important for Fe-acquisition and homeostasis. Plant Signal Behav 1(6):292. doi:10.4161/psb.1.6.3590

    Article  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281(43):32395–32402. doi:10.1074/jbc.M604133200

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65(3):277–284. doi:10.1007/s11103-007-9216-1

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3(2):122–130. doi:10.1007/s12284-010-9042-y

    Article  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2011a) Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signal Behav 6(10):1591–1593. doi:10.4161/psb.6.10.17132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011b) Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr 57(6):803–812. doi:10.1080/00380768.2011.637305

    Article  CAS  Google Scholar 

  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011c) The rice mitochondrial iron transporter is essential for plant growth. Nat Commun 2:322. doi:10.1038/ncomms1326

    Article  PubMed Central  PubMed  Google Scholar 

  • Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK (2013a) Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv 31(8):1624–1633. doi:10.1016/j.biotechadv.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013b) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6(1):1–7. doi:10.1186/1939-8433-6-31

    Article  Google Scholar 

  • Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013c) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci. doi:10.3389/fpls.2013.00015

    Google Scholar 

  • Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa N (2014) Transcriptomic analysis of rice in response to iron deficiency and excess. Rice 7(1):18. doi:10.1186/s12284-014-0018-1

    Article  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant Cell Environ 26(10):1703–1711. doi:10.1046/j.1365-3040.2003.01088.x

    Article  CAS  Google Scholar 

  • Briat J-F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105(5):811–822. doi:10.1093/aob/mcp128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409(6818):346–349. doi:10.1038/35053080

    Article  CAS  PubMed  Google Scholar 

  • Englerblum G, Meier M, Frank J, Muller GA (1993) Reduction of background problems in nonradioactive northern and southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210(2):235–244. doi:10.1006/abio.1993.1189

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res 7(3):173–180. doi:10.1023/A:1008836812714

    Article  CAS  Google Scholar 

  • Guerinot ML, Ying Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820. doi:10.1104/pp.104.3.815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA) -. Bioenergetics 1275(3):161–203. doi:10.1016/0005-2728(96)00022-9

    Article  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36(3):366–381. doi:10.1046/j.1365-313X.2003.01878.x

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated Iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284(6):3470–3479. doi:10.1074/jbc.M806042200

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45(3):335–346. doi:10.1111/j.1365-313X.2005.02624.x

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci 104(18):7373–7378. doi:10.1073/pnas.0610555104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Fujimoto M, An G, Itai RN, Tsutsumi N, Nakanishi H, Nishizawa NK (2009) Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Mol Plant 2(5):1059–1066. doi:10.1093/mp/ssp051

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62(3):379–390. doi:10.1111/j.1365-313X.2010.04158.x

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Nakanishi H, Nishizawa NK (2011a) The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signal Behav 6(10):1624–1626

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011b) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649–24655. doi:10.1074/jbc.M111.221168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol 79(6):583–594. doi:10.1007/s11103-012-9930-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY(TM) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195. doi:10.1016/s1360-1385(02)02251-3

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker EP, Sato Y, Goshima S, Uozumi N (2001) Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci 98(11):6488–6493. doi:10.1073/pnas.101556598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295–1298. doi:10.1126/science.1132563

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63(1):131–152. doi:10.1146/annurev-arplant-042811-105522

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424. doi:10.1111/j.1365-313X.2004.02146.x

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800. doi:10.1104/pp.109.135418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci 88(18):8222–8226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23(5):1815–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu T, Zeng J, Xia K, Fan T, Li Y, Wang Y, Xu X, Zhang M (2012) Evolutionary expansion and functional diversification of oligopeptide transporter gene family in rice. Rice 5:12. doi:10.1186/1939-8433-5-12

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3–7):695–713. doi:10.1080/01904168609363475

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, Schroeder JI (2014) OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol Plant. doi:10.1093/mp/ssu067

    PubMed Central  PubMed  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2(3):250–253. doi:10.1016/s1369-5266(99)80043-0

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem saps from rice plants (Oryza sativa L.). Plant Cell Physiol 53(2):381–390. doi:10.1093/pcp/pcr188

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454. doi:10.1074/jbc.M110.180026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014a) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77(2):246–260. doi:10.1111/tpj.12383

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014b) Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signal Behav 9(3):e28660. doi:10.4161/psb.28660

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57(11):2867–2878. doi:10.1093/jxb/erl054

    Article  CAS  PubMed  Google Scholar 

  • Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51(3):366–377. doi:10.1111/j.1365-313X.2007.03149.x

    Article  CAS  PubMed  Google Scholar 

  • Pang S, Li X-F, Liu z, Cheng-Ju W (2010) ZmGT1 transports glutathione conjugates and its expression is induced by herbicide atrazine. Prog Biochem Biophys 37(10):1120–1127

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta (BBA) Bioenerg 975(3):384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Ryu C, Lee S, Cho L, Kim S, Lee Y, Choi S, Jeong H, Yi J, Park S, Han C, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32(10):1412–1427

    Article  CAS  PubMed  Google Scholar 

  • Stacey M, Osawa H, Patel A, Gassmann W, Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223(2):291–305. doi:10.1007/s00425-005-0087-x

    Article  CAS  PubMed  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146(2):589–601. doi:10.1104/pp.107.108183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takagi S-i (1976) Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22(4):423–433

    Article  CAS  Google Scholar 

  • Takagi Si, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7(1–5):469–477. doi:10.1080/01904168409363213

    Article  CAS  Google Scholar 

  • Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat J-F (1999) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17(1):93–97. doi:10.1046/j.1365-313X.1999.00349.x

    Article  PubMed  Google Scholar 

  • Vasconcelos MW, Li GW, Lubkowitz MA, Grusak MA (2008) Characterization of the PT clade of oligopeptide transporters in rice. Plant Genome 1(2):77–88. doi:10.3835/plantgenome2007.10.0540

    Article  CAS  Google Scholar 

  • Wiles AM, Naider F, Becker JM (2006) Transmembrane domain prediction and consensus sequence identification of the oligopeptide transport family. Res Microbiol 157(4):395–406. doi:10.1016/j.resmic.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2002) World Health Report 2002. http://www.who.int/whr/2002/en/whr02_en.pdf?ua=1

  • Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19(9):556–563. doi:10.1016/j.tplants.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 Is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149(1):297–305. doi:10.1104/pp.108.128132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshihara T, Kobayashi T, Goto F, Masuda T, Higuchi K, Nakanishi H, Nishizawa NK, Mori S (2003) Regulation of the iron-deficiency responsive gene, Ids2, of barley in tobacco. Plant Biotechnol 20(1):33–41

    Article  CAS  Google Scholar 

  • Zhai Z, Gayomba SR, H-i Jung, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV, Vatamaniuk OK (2014) OPT3 Is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in arabidopsis. Plant Cell 26:2249–2264. doi:10.1105/tpc.114.123737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M-Y, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134(1):482–491. doi:10.1104/pp.103.030940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu Y-H, Yi H-Y, Gong J-M (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410. doi:10.1111/j.1365-313X.2012.05088.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Green Technology Project IP-5003). K.B. was supported by Japanese Agency for the promotion of Science. We also express our thanks to Dr. Takanori Kobayashi for critically reading this manuscript. We are also obliged to Houdo Tanaka (The University of Tokyo) for assisting our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko K. Nishizawa.

Additional information

Khurram Bashir and Yasuhiro Ishimaru have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, K., Ishimaru, Y., Itai, R.N. et al. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Mol Biol 88, 165–176 (2015). https://doi.org/10.1007/s11103-015-0315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0315-0

Keywords

Navigation