Skip to main content
Log in

Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Di19 (drought-induced protein19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, Arabidopsis Di19-3 was functionally characterized. The experimental results revealed that AtDi19-3 is a transcriptional activator, and could bind to the TACA(A/G)T sequence. AtDi19-3 expression in plants was remarkably induced by NaCl, mannitol and abscisic acid (ABA). T-DNA insertion mutation of AtDi19-3 results in an increase in plant tolerance to drought and high salinity stresses and ABA, whereas overexpression of AtDi19-3 leads to a drought-, salt- and ABA-sensitive phenotype of the transgenic plants. In the presence of NaCl, mannitol or ABA, rates of seed germination and cotyledon greening in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression transgenic plants were lower than those in wild type. Roots of Atdi19-3 mutant seedlings were longer, but those of AtDi19-3 overexpression transgenic seedlings were shorter than those of wild type. Chlorophyll and proline contents in Atdi19-3 mutant were higher, but in AtDi19-3 overexpression seedlings were lower than those in wild type. Atdi19-3 mutant showed greater drought-tolerance, whereas AtDi19-3 overexpression transgenic plants exhibited more drought-sensitivity than wild type. Furthermore, expression of the genes related to ABA signaling pathway was altered in Atdi19-3 mutant and AtDi19-3 transgenic plants. These data suggest that AtDi19-3 may participate in plant response to drought and salt stresses in an ABA-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Tiwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid regulated gene expression. Plant Cell 9:1859–1868

  • Bailly C, EI Maarouf Bouteau H, Corbineau F (2008) Seed dormancy alleviation and oxidative signaling. J Soc Biol 202:241–248

    Article  CAS  PubMed  Google Scholar 

  • Belin C, Megies C, Hauserová E, Lopez-Molina L (2009) Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21:2253–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chak RK, Thomas TL, Quatrano RS, Rock CD (2000) The genes ABI1 and ABI2 are involved in abscisic acid- and drought inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana (L.) Heynh. Planta 210:875–883

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Gong SY, Huang GQ, Sun X, Li P, Zhao LL, Zhang DJ, Li XB (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol 14:447–457

    Article  CAS  PubMed  Google Scholar 

  • Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246:10–18

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663

    Article  CAS  PubMed  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, Miginiac E (1999) Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J 18:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol 142:1559–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun Yun DJ, Lee SY, Lim CO, Cho MJ (2001) A novel cold inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  CAS  PubMed  Google Scholar 

  • Lang V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20:951–962

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49(1):199–222

  • Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Tai FJ, Zheng Y, Luo J, Gong SY, Zhang ZT, Li XB (2010) Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol 74:437–452

    Article  CAS  PubMed  Google Scholar 

  • Lida A, Kazuoka T, Torikai S, Kikuchi H, Oeda K (2000) A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J 24:191–203

    Article  Google Scholar 

  • Liu J, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94:14960–14964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF (2013) Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant 6:1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Meng XD, Brodsky MH, Wolfe SA (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23:988–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milla MA, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61:13–30

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  • Qin LX, Rao Y, Li L, Huang JF, Xu WL, Li XB (2013) Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS ONE 8:e59115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zincfinger protein gene family under water stress. Gene 248:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Searles MA, Lu D, Klung A (2000) The role of the central zinc fingers of transcription factor IIIA in binding to 5S RNA. J Mol Biol 301:47–60

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene, function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H (1999) Zinc-finger proteins, the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive lociin low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  CAS  PubMed  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  CAS  PubMed  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  Google Scholar 

  • Xu S, Wang X, Chen J (2007) Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep 26:497–506

    Article  CAS  PubMed  Google Scholar 

  • Xu WL, Zhang DJ, Wu YF, Qin LX, Huang GQ, Li J, Li L, Li XB (2013) Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol 82:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Professor Jeff Harper in University of Nevada (Reno, NV89557, USA) for kindly providing Atdi19-3 T-DNA insertion mutant seeds. This work was supported by the project from the Ministry of Agriculture of China for Transgenic Research (Grant No. 2014ZX08009-27B) and Natural Sciences Foundation of Hubei Province (Grant No. 2012FFA126, 2013CFA119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Bao Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, LX., Li, Y., Li, DD. et al. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses. Plant Mol Biol 86, 609–625 (2014). https://doi.org/10.1007/s11103-014-0251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0251-4

Keywords

Navigation