Skip to main content
Log in

Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3′–5′ exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y (2008) The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell 19(10):4154–4166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS (2009) The Ccr4–NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol Biol Cell 20(17):3840–3850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azzouz N, Panasenko OO, Colau G, Collart MA (2009) The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS ONE 4(8):e6760

    Article  PubMed Central  PubMed  Google Scholar 

  • Belostotsky DA, Sieburth LE (2009) Kill the messenger: mRNA decay and plant development. Curr Opin Plant Biol 12(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W, Jefferson RA, Grossniklaus U, Curtis MD (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141(4):1194–1204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai H, Lian X, Song Z (2011) Sequence and expression analysis of CCR4-associated factor 1 (OsCAF1) gene family in rice. J Plant Mol Biol Biotechnol 2(1):47–64

    Google Scholar 

  • Caponigro G, Parker R (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9(19):2421–2432

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Chiang YC, Denis CL (2002) CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21(6):1414–1426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiba Y, Green PJ (2009) mRNA degradation machinery in plants. J Plant Biol 52(2):114–124

    Article  CAS  Google Scholar 

  • Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S (2013) Changes in mRNA stability associated with cold stress in Arabidopsis cells. Plant Cell Physiol 54(2):180–194

    Article  CAS  PubMed  Google Scholar 

  • Clark LB, Viswanathan P, Quigley G, Chiang YC, McMahon JS, Yao G, Chen J, Nelsbach A, Denis CL (2004) Systematic mutagenesis of the leucine-rich repeat (LRR) domain of CCR4 reveals specific sites for binding to CAF1 and a separate critical role for the LRR in CCR4 deadenylase activity. J Biol Chem 279(14):13616–13623

    Article  CAS  PubMed  Google Scholar 

  • Collart MA, Panasenko OO (2012) The Ccr4–not complex. Gene 492(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dez C, Houseley J, Tollervey D (2006) Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J 25(7):1534–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doma MK, Parker R (2007) RNA quality control in eukaryotes. Cell 131(4):660–668

    Article  CAS  PubMed  Google Scholar 

  • Dupressoir A, Morel AP, Barbot W, Loireau MP, Corbo L, Heidmann T (2001) Identification of four families of yCCR4- and Mg2+ -dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genom 2:9

    Article  CAS  Google Scholar 

  • Egecioglu DE, Henras AK, Chanfreau GF (2006) Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 12(1):26–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CY, Shyu AB, Yates JR 3rd, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35(6):868–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang F, Hoskins J, Butler JS (2004) 5-fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs. Mol Cell Biol 24(24):10766–10776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feddersen A, Dedic E, Poulsen EG, Schmid M, Van LB, Jensen TH, Brodersen DE (2012) Saccharomyces cerevisiae Ngl3p is an active 3′–5′ exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases. Nucleic Acids Res 40(2):837–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10(7):3168–3185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Katada T, Hoshino S (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 21(23):3135–3148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho S, Chao Y, Tong W, Yu S (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol 125(2):877–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayne S, Zwartjes CG, van Schaik FM, Timmers HT (2006) Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem J 398(3):461–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K (2007) Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. Plant Biotechnol J 5(4):477–482

    Article  CAS  PubMed  Google Scholar 

  • Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J (2004) Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18(11):1227–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kojima S, Shingle DL, Green CB (2011) Post-transcriptional control of circadian rhythms. J Cell Sci 124(3):311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korner CG, Wormington M, Muckenthaler M, Schneider S, Dehlin E, Wahle E (1998) The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J 17(18):5427–5437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121(5):713–724

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Mulder KW, Brenkman AB, Mohammed S, van den Broek NJ, Heck AJ, Timmers HT (2010) Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae. PLoS ONE 5(4):e9864

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X (2009) The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res 19(3):307–316

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rosas I, Orozco E, Marchat LA, Garcia-Rivera G, Guillen N, Weber C, Carrillo-Tapia E, Hernandez de la Cruz O, Perez-Plasencia C, Lopez-Camarillo C (2012) mRNA decay proteins are targeted to poly(A) + RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica. PLoS ONE 7(9):e45966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loschi M, Leishman CC, Berardone N, Boccaccio GL (2009) Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci 122(21):3973–3982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer S, Temme C, Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39(4):197–216

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Aslam A, Doidge R, Medica R, Winkler GS (2011) The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4–Not complex contribute to the prevention of cell death and senescence. Mol Biol Cell 22(6):748–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molin L, Puisieux A (2005) C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358:73–81

    Article  CAS  PubMed  Google Scholar 

  • Moreno AB, Martinez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC (2013) Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 41(8):4699–4708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita M, Suzuki T, Nakamura T, Yokoyama K, Miyasaka T, Yamamoto T (2007) Depletion of mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and impairs cell growth. Mol Cell Biol 27(13):4980–4990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder KW, Winkler GS, Timmers HT (2005) DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4–Not complex. Nucleic Acids Res 33(19):6384–6392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder KW, Brenkman AB, Inagaki A, van den Broek NJ, Timmers HT (2007) Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res 35(7):2428–2439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakaminami K, Matsui A, Shinozaki K, Seki M (2012) RNA regulation in plant abiotic stress responses. Biochim Biophys Acta 1819(2):149–153

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohn T, Chiang YC, Lee DJ, Yao G, Zhang C, Denis CL (2007) CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Res 35(9):3002–3015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker R, Song HW (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2):121–127

    Article  CAS  PubMed  Google Scholar 

  • Piao X, Zhang X, Wu L, Belasco JG (2010) CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol Cell Biol 30(6):1486–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pomeranz MC, Hah C, Lin PC, Kang SG, Finer JJ, Blackshear PJ, Jang JC (2010) The Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol 152(1):151–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15(5):259–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE 8(5):e64594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rayson S, Arciga-Reyes L, Wootton L, De Torres Zabala M, Truman W, Graham N, Grant M, Davies B (2012) A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PLoS ONE 7(2):e31917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rio DC, Ares Jr. M, Hannon GJ, Nilsen TW (2010) Polyacrylamide gel electrophoresis of RNA. Cold Spring Harb Protoc, 2010(6), pdb prot5444

  • Robin-Lespinasse Y, Sentis S, Kolytcheff C, Rostan MC, Corbo L, Le Romancer M (2007) hCAF1, a new regulator of PRMT1-dependent arginine methylation. J Cell Sci 120(4):638–647

    Article  CAS  PubMed  Google Scholar 

  • Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33(2):209–218

    CAS  Google Scholar 

  • Sarowar S, Oh HW, Cho HS, Baek KH, Seong ES, Joung YH, Choi GJ, Lee S, Choi D (2007) Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J 51(5):792–802

    Article  CAS  PubMed  Google Scholar 

  • Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C (2008) A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res 36(10):3374–3388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C (2009) The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 37(16):5511–5528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 26(6), 1125, 1128–1132

  • Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Staiger D, Green R (2011) RNA-based regulation in the plant circadian clock. Trends Plant Sci 16(10):517–523

    Article  CAS  PubMed  Google Scholar 

  • Stoppin-Mellet V, Gaillard J, Timmers T, Meumann E, Conway J, Vantard M (2007) Arabidopsis katanin binds microtubules using a mutimeric microtubule-binding domain. Plant Physiol Biochem 45(12):867–877

  • Sweet TJ, Boyer B, Hu W, Baker KE, Coller J (2007) Microtubule disruption stimulates P-body formation. RNA 13(4):493–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira D, Parker R (2007) Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell 18(6):2274–2287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temme C, Zaessinger S, Meyer S, Simonelig M, Wahle E (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J 23(14):2862–2871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E (2010) Subunits of the drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16(7):1356–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tharun S, Parker R (2001) Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8(5):1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5(1):6

  • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104(3):377–386

    Article  CAS  PubMed  Google Scholar 

  • Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21(6):1427–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K (2010a) Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol 152(2):866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walley JW, Kelley DR, Savchenko T, Dehesh K (2010b) Investigating the function of CAF1 deadenylases during plant stress responses. Plant Signal Behav 5(7):802–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56(4):517–530

    Article  CAS  PubMed  Google Scholar 

  • Wilusz CJ, Wang W, Peltz SW (2001) Curbing the nonsense: the activation and regulation of mRNA surveillance. Genes Dev 15(21):2781–2785

    CAS  PubMed  Google Scholar 

  • Winkler G, Balacco DL (2013) Balacco heterogeneity and complexity within the nuclease module of the Ccr4-Not complex. Front Genet 4:296

    Article  PubMed Central  PubMed  Google Scholar 

  • Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Regnault B, Devaux F, Namane A, Seraphin B, Libri D, Jacquier A (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121(5):725–737

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Chua NH (2009) Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. Plant Cell 21(10):3270–3279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB (2005) Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12(12):1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB (2008) Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol 182(1):89–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zwartjes CG, Jayne S, van den Berg DL, Timmers HT (2004) Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J Biol Chem 279(12):10848–10854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Su-May Yu and Ms. Sue-Ping Lee at the Institute of Molecular Biology, Academia Sinica, Taipei, for technical assistance in confocal microscopy. This work was supported by a Grant (100-2321-B-008-003-MY3) from the National Science Council of the Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-An Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, WL., Huang, LF., Fang, JC. et al. Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa . Plant Mol Biol 85, 443–458 (2014). https://doi.org/10.1007/s11103-014-0196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0196-7

Keywords

Navigation