Skip to main content
Log in

The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

While Arabidopsis bears only one MET1 gene encoding the DNA methyltransferase that is mainly responsible for maintaining CG methylation after DNA replication, rice carries two MET1 genes, MET1a and MET1b, expressed in actively replicating and dividing cells, and MET1b is more abundantly expressed than is MET1a. A met1a null mutant displayed no overt phenotypes, implying that MET1b must play a major role in the maintenance DNA methylation. Here, we employed two met1b null mutants, generated by homologous recombination-mediated knock-in targeting and insertion of endogenous retrotransposon Tos17. These MET1a/MET1a met1b/met1b homozygotes exhibited abnormal seed phenotypes, which is associated with either viviparous germination or early embryonic lethality. They also displayed decreased levels of DNA methylation at repetitive CentO sequences and at the FIE1 gene locus in the embryos. In addition, independently isolated knock-in-targeted plants, in which the promoterless GUS reporter gene was fused with the endogenous MET1b promoter, showed the reproducible, dosage-dependent, and spatiotemporal expression patterns of GUS. The genotyping analysis of selfed progeny of heterozygous met1a met1b null mutants indicated that weakly active MET1a seems to serve as a genetic backup mechanism in rice met1b gametophytes, although the stochastic and uncoordinated activation of epigenetic backup mechanisms occurred less efficiently in the met1b homozygotes of rice than in the met1 homozygotes of Arabidopsis. Moreover, passive depletion of CG methylation during the postmeiotic DNA replication in the haploid nuclei of the met1a met1b gametophytes in rice results in early embryonic lethality. This situation somewhat resembles that of the met1 gametophytes in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agius F, Kapoor A, Zhu J-K (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103:11796–11801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chan SW-L, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhou D-X (2013) Rice epigenomics and epigenetics: challenges and opportunities. Curr Opin Plant Biol 16:164–169

    Article  CAS  PubMed  Google Scholar 

  • Da Ines O, White CI (2013) Gene site-specific insertion in plants. In: Renault S, Duchateau P (eds) Site-directed insertion of transgenes. Springer, Dordrecht, pp 287–315

    Chapter  Google Scholar 

  • Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi Y, Qian Q, Cheng Z, Chu C, Cao X (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eun C-H, Takagi K, Park K-I, Maekawa M, Iida S, Tsugane K (2012) Activation and epigenetic regulation of DNA transposon nDart1 in rice. Plant Cell Physiol 53:857–868

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Dennis ES (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 21:2383–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh T-F, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing Y, Eun MY, Han C, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  CAS  PubMed  Google Scholar 

  • Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa R, Ohnishi T, Kinoshita Y, Eiguchi M, Kurata N, Kinoshita T (2011) Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division. Plant J 65:798–806

    Article  CAS  PubMed  Google Scholar 

  • Johzuka-Hisatomi Y, Terada R, Iida S (2008) Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 36:4727–4735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the Polycomb group genes. Mol Plant 2:711–723

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  • Mertineit C, Yoder JA, Taketo T, Laird DW, Trasler JM, Bestor TH (1998) Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125:889–897

    CAS  PubMed  Google Scholar 

  • Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, Iida S (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564–574

    Article  CAS  PubMed  Google Scholar 

  • Saze H, Mittelsten Scheid O, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci USA 100:8823–8827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC (2004) Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta 218:337–349

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Terada R, Johzuka-Hisatomi Y, Saitoh M, Asao H, Iida S (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol 144:846–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi T, Moritoh S, Johzuka-Hisatomi Y, Ono A, Terada R, Nakamura I, Iida S (2008) Alternative splicing of the rice OsMET1 genes encoding maintenance DNA methyltransferase. J Plant Physiol 165:1774–1782

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386–396

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cheng Z, Qin R, Qiu Y, Wang J-L, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu C, Wang H, Cao X, Wan J (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hisayo Asao, Miki Shimamoto, and Miwako Matsumoto for their technical assistance; Akemi Ono, Satoru Moritoh, Atsushi Hoshino, Kazuo Tsugane, and Yutaka Sato for discussion; Masahiro Mii, Mikio Nakazono, Hirokazu Kobayashi, and Hiroshi Noguchi for their encouragement; and the Rice Genome Resource Center for providing Tos17 insertion mutant lines. This work was supported by grants from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) from Bio-oriented Technology Research Advancement Institution (BRAIN) in Japan (to SI) and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (No. 2237001 to SI, No. 18-40089 to YJ-H). SI and YJ-H were supported by a grant from the Global Center of Excellence program of MEXT, and YJ-H was also supported by an RPD fellowship from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaki Yamauchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamauchi, T., Johzuka-Hisatomi, Y., Terada, R. et al. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Mol Biol 85, 219–232 (2014). https://doi.org/10.1007/s11103-014-0178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0178-9

Keywords

Navigation