Skip to main content

Advertisement

Log in

High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The biological conversion of plant biomass into fermentable sugars is key to the efficient production of biofuels and other renewable chemicals from plants. As up to more than 90% of the dry weight of higher plants is fixed in the cell wall, this will require the low-cost production of large amounts of cell wall-degrading enzymes. Transgenic plants can potentially provide an unbeatably cheap production platform for industrial enzymes. Transgene expression from the plastid genome is particularly attractive, due to high-level foreign protein accumulation in chloroplasts, absence of epigenetic gene silencing and improved transgene containment. Here, we have explored the potential of transplastomic plants to produce large amounts of thermostable cell wall-degrading enzymes from the bacterium Thermobifida fusca. We show that a set of four enzymes that are required for efficient degradation of cellulose (and the hemicellulose xyloglucan) could be expressed successfully in transplastomic tobacco plants. However, overexpression of the enzymes (to between approximately 5 and 40% of the plant’s total soluble protein) resulted in pigment-deficient mutant phenotypes. We demonstrate that the chloroplast-produced cellulolytic enzymes are highly active. Although further optimization is needed, our data indicate that transgenic plastids offer great potential for the production of enzyme cocktails for the bioconversion of cellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Op Biotechnol 18:237–245

    Article  CAS  Google Scholar 

  • Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  PubMed  CAS  Google Scholar 

  • Bohne A-V, Ruf S, Börner T, Bock R (2007) Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res 35:7256–7266

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Shanklin J, Ohlrogge JB (1992) Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci USA 89:11184–11188

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wilson DB (2007) Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol 189:6260–6265

    Article  PubMed  CAS  Google Scholar 

  • da Costa Sousa L, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Op Biotechnol 20:339–347

    Article  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nature Biotechnol 24:76–77

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485

    Article  PubMed  CAS  Google Scholar 

  • Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J 18:5834–5842

    Article  PubMed  CAS  Google Scholar 

  • Hager M, Hermann M, Biehler K, Krieger-Liszkay A, Bock R (2002) Lack of the small plastid-encoded PsbJ polypeptide results in a defective water-splitting apparatus of photosystem II, reduced photosystem I levels, and hypersensitivity to light. J Biol Chem 277:14031–14039

    Article  PubMed  CAS  Google Scholar 

  • Herz S, Füßl M, Steiger S, Koop H-U (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982

    Article  PubMed  CAS  Google Scholar 

  • Irwin DC, Cheng M, Xiang B, Rose JKC, Wilson DB (2003) Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur J Biochem 270:3083–3091

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Kim S, Bae H, Lim HS, Bae HJ (2010) Expression of thermostable bacterial beta-glucosidase (BglB) in transgenic tobacco plants. Bioresour Technol 101:7155–7161

    PubMed  Google Scholar 

  • Kuroda H, Maliga P (2001) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    Article  PubMed  CAS  Google Scholar 

  • Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279

    Article  PubMed  CAS  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  PubMed  CAS  Google Scholar 

  • Martínez AT, Ruiz-Duenas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Op Biotechnol 20:348–357

    Article  Google Scholar 

  • McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  PubMed  CAS  Google Scholar 

  • Mühlbauer SK, Koop H-U (2005) External control of transgene expression in tobacco plastids using the bacterial lac repressor. Plant J 43:941–946

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009a) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R (2009b) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA 106:6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnol 19:870–875

    Article  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Spiridonov NA, Wilson DB (2001) Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42:295–301

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of the psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  PubMed  CAS  Google Scholar 

  • Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179

    Article  PubMed  CAS  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci USA 107:6204–6209

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Xu Q, Taylor LE II, Baker JO, Tucker MP, Ding S-Y (2009) Natural paradigms of plant cell wall degradation. Curr Op Biotechnol 20:330–338

    Article  CAS  Google Scholar 

  • Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Op Biotechnol 19:166–172

    Article  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  PubMed  CAS  Google Scholar 

  • Ye G-N, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  PubMed  CAS  Google Scholar 

  • Yu L-X, Gray BN, Rutzke CJ, Walker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. J Biotechnol 131:362–369

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers A-MI, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of HIV antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer T, Raasch JA, Austin-Phillips S (2009) Expression of Acidothermus cellulolyticus E1 endo-β-1, 4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 7:527–536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David B. Wilson (Cornell University, Ithaca, NY, USA) for generously providing antibodies against Thermobifida cellulolytic enzymes, Claudia Hasse and Dr. Stephanie Ruf for help with plastid transformation, Dr. Marc Lohse for help with codon optimization, Sandra Stegemann for help with plant tissue culture and Dr. Lutz Neumetzler (all MPI-MP) for help with enzyme activity assays. This work was supported by a grant from the Bundesministerium für Bildung und Forschung (BMBF) to R.B. and by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, K., Bock, R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76, 311–321 (2011). https://doi.org/10.1007/s11103-011-9742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9742-8

Keywords

Navigation