Skip to main content
Log in

Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is known to play an important role in the interaction between plant and micro-organisms, both symbiotic and pathogen. In particular, high levels of SA block nodule formation and mycorrhizal colonization in plants. A mutant of Lotus japonicus, named Ljsym4-2, was characterized as unable to establish positive interactions with Rhizobium and fungi (NOD, MYC); in particular, it does not recognize signal molecules released by symbiotic micro-organisms so that eventually, epidermal cells undergo PCD at the contact area. We performed a detailed characterization of wild-type and Ljsym4-2 cultured cells by taking into account several parameters characterizing cell responses to SA, a molecule strongly involved in defense signaling pathways. In the presence of 0.5 mM SA, Ljsym4-2 suspension-cultured cells reduce their growth and eventually die, whereas in order to induce the same effects in wt suspension cells, SA concentration must be raised to 1.5 mM. An early and short production of nitric oxide (NO) and reactive oxygen species (ROS) was detected in wt-treated cells. In contrast, a continuous production of NO and a double-peak ROS response, similar to that reported after a pathogenic attack, was observed in the mutant Ljsym4-2 cells. At the molecular level, a constitutive higher level of a SA-inducible pathogenesis related gene was observed. The analysis in planta revealed a strong induction of the LjPR1 gene in the Ljsym4-2 mutant inoculated with Mesorhizobium loti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation, two extremes in host specificity meet. EMBO J 18:281–288

    Article  PubMed  CAS  Google Scholar 

  • Anè JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd D, Ayax C, Levy J, Debellé F, Baek JM, Kalò P, Rosemberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 is required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Griveau S, Bedioui F, Wendehenne D (2008) Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. J Exp Bot 59:3407–3414

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J, Parniske M (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant Microb Interact 13:1109–1120

    Article  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill J (2005) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  Google Scholar 

  • Campbell GR, Reuhs BL, Walker GC (2002) Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proc Natl Acad Sci USA 19:3938–3943

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Carimi F, Terzi M, De Michele R, Zottini M, Lo Schiavo F (2004) High levels of the cytokinin BAP induce PCD by accelerating senescence. Plant Sci 166:963–969

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattelan I, De Michele R, Terzi M, Lo Schiavo F (2005) NO signalling in cytokinin-induced programmed cell death. Plant Cell and Environ 28:1171–1178

    Article  CAS  Google Scholar 

  • Carlson RW, Kalembasa S, Turowski D, Pachori P, Noel KD (1987) Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development. J Bacteriol 169:4923–4928

    PubMed  CAS  Google Scholar 

  • Chandra S, Martin MB, Low PS (1996) The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proc Natl Acad Sci USA 93:13393–13397

    Article  PubMed  CAS  Google Scholar 

  • Charpentier M, Bredemier R, Wanner G, Takeda N, Schleiff E, Parniske M (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20:3467–3479

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Fan C, Gao M, Zhu H (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306–317

    Article  PubMed  CAS  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512

    Article  PubMed  Google Scholar 

  • D’Antuono AL, Ott T, Krussell L, Voroshilova V, Ugalde RA, Udvardi M, Lepek VC (2008) Defects in rhizobial cyclic glucan and lypopolysaccharide synthesis alter legume gene expression during nodule development. Mol Plant Microbe Interact 21:50–60

    Article  PubMed  CAS  Google Scholar 

  • de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Draper J (1997) Salicylate, superoxide synthesis and cell suicide in plant defence. Trends Plant Sci 2:162–165

    Article  Google Scholar 

  • Durner J, Shab J, Klessing DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–277

    Article  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Feys B, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  CAS  Google Scholar 

  • Gualtieri G, Bisseling T (2000) The evolution of nodulation. Plant Mol Biol 42:181–194

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (1997) Signalling between pathogenic rust fungi and resistant or susceptible host plants. Ann Bot 80:713–720

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouci H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu G-J, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Wooland ACS, Wolff S (1990) Hydrogen peroxide production during experimental protein glycation. FEBS Lett 268:69–71

    Article  PubMed  CAS  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    Article  PubMed  CAS  Google Scholar 

  • Kalò P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsh S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd D (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie AJ, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    Article  PubMed  CAS  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution and signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu G-J, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during ealy stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    Article  PubMed  CAS  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 94:491–501

    Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kukilova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosemberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Lian B, Zhou X, Miransari M, Smith DL (2000) Effects of salycilic acid on the development and root nodulation of soybean seedlings. J Agron Crop Sci 185:187–192

    Article  CAS  Google Scholar 

  • Lin C, Yu Y, Kadono T, Iwata M, Umemura K, Furuichi T, Kuse M, Isobe M, Yamamoto Y, Matsumoto H, Yoshizuka K, Kawano T (2005) Action of aluminium, novel TPC1-type channel inhibitor, against salicylate-induced and cold-shock-induced calcium influx in tobacco BY-2 cells. BBRC 332:823–830

    PubMed  CAS  Google Scholar 

  • Lohar DP, Shaparova N, Endre G, Peñuela S, Samac D, Town C, Siverstein KA, VandenBosch KA (2006) Transcript analysis of early events in Medicago truncatula. Plant Physiol 140:221–234

    Article  PubMed  CAS  Google Scholar 

  • Lum HK, Butt YKC, Lo SCL (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide Biol Chem 6:205–213

    Article  CAS  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant Microbe Interact 11:153–155

    Article  CAS  Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, Chiurazzi M (1999) A fast and efficient experimental system for T-DNA tagging in the model legume Lotus japonicus. Trapping sequences frequencies, expression patterns and potential for insertional mutagenesis. Mol Plant Microbe Interact 12:275–284

    Article  CAS  Google Scholar 

  • Medina MJH, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  CAS  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalò P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook GB, Oldroyd GE (2007) An ERFtranscription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    Article  PubMed  CAS  Google Scholar 

  • Miwa H, Sun J, Oldroyd GED, Downie JA (2006) Analysis of nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol Plant Microbe Interact 19:914–923

    Article  PubMed  CAS  Google Scholar 

  • Miya AF, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signalling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  Google Scholar 

  • Murakami Y, Miwa H, Imaizumi-Anraku H, Kouchi H, Downie JA, Kawaguchi M, Kawasaki S (2006) Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required NIN and ENOD40 gene expression in nodule initiation. DNA Res 13:255–265

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21:1175–1183

    Article  PubMed  Google Scholar 

  • Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427:263–266

    Article  PubMed  CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhyzal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  PubMed  CAS  Google Scholar 

  • Novero M, Faccio A, Genre A, Stougaard J, Webb KJ, Mulder L, Parniske M, Bonfante P (2002) Dual requirement of the LjSym4 gene for micorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol 154:741–749

    Article  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Ann Rev Plant Mol Biol 59:519–546

    Article  CAS  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57:3043–3055

    Article  PubMed  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Sougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  PubMed  CAS  Google Scholar 

  • Riely BK, Lougnon G, Ané J-M, Cook DR (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J 49:208–216

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259:414–423

    Article  PubMed  CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Bhattacharya MK (1999) Color coding the cell death status of plant suspension cells. Biotechniques 26:1060–1062

    PubMed  CAS  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    Article  PubMed  CAS  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Mc Alvin CB, Kim S-Y, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–996

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  • Traas JA, Beven AF, Doonan JH, Cordewener J, Shaw PJ (1992) Cell-cycle-dependent changes in labelling of specific phosphoproteins by monoclonal antibody MPM-2 in plant cells. Plant J 2:723–732

    CAS  Google Scholar 

  • Van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne JW, Boot KJM (2003) Salycilic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant Microb Interact 16:83–91

    Article  Google Scholar 

  • Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566

    Article  Google Scholar 

  • Veershlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R (2004) nip a symbiontic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defence-like response. Plant Physiol 136:3692–3702

    Article  CAS  Google Scholar 

  • Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Kim S-Y, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signalling and fungal resistance in Arabidopsis. Plant Cell 20:182–481

    Article  CAS  Google Scholar 

  • Zottini M, Barizza E, Bastianelli F, Carimi F, Lo Schiavo F (2006) Growth and senescence of Medicago truncatula cultured cells are associated with characteristic mitochondrial morphology. New Phytol 172:239–247

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Costa A, De Michele M, Ruzzene M, Carimi C, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. JP Metraux for providing us pROK-2 vector. Lotus japonicus seeds (wild type and Ljsym4-2) were kindly provided by Prof. P Bonfante. This research was supported by the “Ministero dell’Istruzione e della Ricerca, fondi PRIN” to F.L.S. and by a grant from the EEC (INTEGRAL: MRTN-CT-2003-505227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Costa.

Additional information

This report is dedicated to the memory of Prof. M. Terzi.

Fiorenza Bastianelli and Alex Costa are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastianelli, F., Costa, A., Vescovi, M. et al. Salicylic acid differentially affects suspension cell cultures of Lotus japonicus and one of its non-symbiotic mutants. Plant Mol Biol 72, 469–483 (2010). https://doi.org/10.1007/s11103-009-9585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9585-8

Keywords

Navigation