Skip to main content
Log in

Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Although the hormonal control of root growth and development has been extensively studied, relatively little is known about the role that ethylene plays in cereal root development. In this work, we have investigated how the ethylene biosynthetic machinery is spatially regulated in maize roots and how changes in its expression alter root growth. ACC synthase (ZmACS) expression was observed in the root cap and in cortical cells whereas ACC oxidase (ZmACO) expression was detected in the root cap, protophloem sieve elements, and the companion cells associated with metaphloem sieve elements. Roots from Zmacs6 mutants exhibited significantly reduced ethylene production, a smaller root cap of increased cell number but smaller cell size, accelerated elongation of metaxylem, cortical, and epidermal cells, and increased vacuolation of cells in the calyptrogen of the root cap, phenotypes that were complemented by exogenous ACC. Zmacs6 mutant roots exhibited increased growth when largely unimpeded, a phenotype complemented by exogenous ACC, whereas loss of ZmACS2 expression had less of an effect. In contrast, Zmacs6 plants exhibited reduced root growth in soil. These results suggest that expression of ZmACS6 is important in regulating growth of maize roots in response to physical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACS:

ACC synthase

ACO:

ACC oxidase

AVG:

Aminoethoxyvinylglycine

CC:

Companion cells

eIF:

Eukaryotic initiation factor

EtOH:

Ethanol

MSE:

Metaphloem sieve element

MS:

Murashige and Skoog

QC:

Quiescent center

qRT-PCR:

Quantitative RT-PCR

(TIR)-PCR:

Terminal-inverted-repeat

PSE:

Protophloem sieve element

TE:

Tris–EDTA

ZmXET :

Maize xyloglucan endo-transglycosylase

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press Inc, San Diego, 414 pp

  • Amrhein N, Breuing F, Eberle J, Skorupka H, Tophof S (1982) The metabolism of l-aminocycloproprane-l-carboxylic acid. In: Waering PF (ed) Plant growth substances. Academic Press, New York, pp 249–258

    Google Scholar 

  • Apelbaum A, Burg SP (1972) Effect of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum. Plant Physiol 50:117–124

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Wasteneys GO, Masle J (2003) Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol 132:1085–1096. doi:10.1104/pp.102.019182

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396. doi:10.1104/pp.105.075671

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Kim YS, Lee JY, Kaufman PB, Kirakosyan A, Yun HS et al (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673. doi:10.1111/j.0031-9317.2004.00356.x

    Article  CAS  Google Scholar 

  • Clark DG, Gubrium EK, Barrett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–60. doi:10.1104/pp.121.1.53

    Article  PubMed  CAS  Google Scholar 

  • Dolan L (1998) Pointing roots in the right direction: the role of auxin transport in response to gravity. Genes Dev 12:2091–2095. doi:10.1101/gad.12.14.2091

    Article  PubMed  CAS  Google Scholar 

  • Ecker JR, Davis RW (1987) Plant defense genes are regulated by ethylene. Proc Natl Acad Sci USA 84:5202–5206. doi:10.1073/pnas.84.15.5202

    Article  PubMed  CAS  Google Scholar 

  • Eleftheriou EP (1995) Phloem structure and cytochemistry. BIOS Thessaloniki 3:81–124

    Google Scholar 

  • Feldman LJ (1984) Regulation of root development. Annu Rev Plant Physiol 35:223–242. doi:10.1146/annurev.pp.35.060184.001255

    Article  PubMed  CAS  Google Scholar 

  • Finlayson SA, Foster KR, Reid DM (1991) Transport and metabolism of 1-aminocyclopropane-1-carboxylic acid in sunflower (Helianthus annuus L.) seedlings. Plant Physiol 96:1360–1367

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281. doi:10.1007/s00438-004-0977-9

    Article  PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602. doi:10.1046/j.1365-313X.1995.8040595.x

    Article  CAS  Google Scholar 

  • Jackson D (1991) In situ hybridization in plants. In: Bowles DJ, Gurr SJ, McPherson M (eds) Molecular plant pathology: a practical approach, vol 1. IRC Press, Oxford, pp 163–174

    Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci 2:22–28. doi:10.1016/S1360-1385(96)10050-9

    Article  Google Scholar 

  • John I, Drake R, Farrell A, Cooper W, Lee P, Horton P et al (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 7:483–490. doi:10.1046/j.1365-313X.1995.7030483.x

    Article  CAS  Google Scholar 

  • Langdale JA (1994) In situ hybridization. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York, pp 165–180

    Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519–522. doi:10.1104/pp.125.2.519

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chang W-K, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Abel S, Keller JA, Shen NF, Theologis A (1992) The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89:11046–11050. doi:10.1073/pnas.89.22.11046

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC Press, Boca Raton, 337 pp

  • Morgan P, Gausman H (1966) Effects of ethylene on auxin transport. Plant Physiol 41:45–52

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y et al (1998) Differential expression and internal feedback regulation of 1-amino cyclopropane-1-carboxylate synthase, of 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295–1305. doi:10.1104/pp.118.4.1295

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Martínez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317:507–510. doi:10.1126/science.1143409

    Article  PubMed  CAS  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560. doi:10.1046/j.1365-313x.1998.00321.x

    Article  PubMed  CAS  Google Scholar 

  • Ponce G, Barlow PW, Feldman LJ, Cassab GI (2005) Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ 28:719–732. doi:10.1111/j.1365-3040.2005.01318.x

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212. doi:10.1105/tpc.107.052126

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sarquis JI, Jordan WR, Morgan PW (1991) Ethylene evolution from maize (Zea mays L.) seedling roots and shoots in response to mechanical impedance. Plant Physiol 96:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW (2000) Constructing a plant cell. The genetic control of root hair development. Plant Physiol 124:1525–1531. doi:10.1104/pp.124.4.1525

    Article  PubMed  CAS  Google Scholar 

  • Sell S, Hehl R (2005) A fifth member of the tomato 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced. DNA Seq 16:80–82. doi:10.1080/10425170500050817

    PubMed  CAS  Google Scholar 

  • Sjolund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146. doi:10.1105/tpc.9.7.1137

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94:2756–2761. doi:10.1073/pnas.94.6.2756

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242. doi:10.1105/tpc.105.033365

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi:10.1105/tpc.107.052068

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC (1988) Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol 88:795–799

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196. doi:10.1105/tpc.107.052100

    Article  PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000. doi:10.1104/pp.104.049999

    Article  PubMed  CAS  Google Scholar 

  • Tudela D, Primo-Millo E (1992) 1-Aminocyclopropane-1-carboxylic acid transported from roots to shoots promotes leaf abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) seedlings rehydrated after water stress. Plant Physiol 100:131–137

    Article  PubMed  CAS  Google Scholar 

  • Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC (2001) A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiol 125:955–968. doi:10.1104/pp.125.2.955

    Article  Google Scholar 

  • Whalen MC, Feldman LJ (1988) The effect of ethylene on root growth of Zea mays seedlings. Can J Bot 66:719–723

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189. doi:10.1146/annurev.pp.35.060184.001103

    Article  CAS  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115:737–751

    PubMed  CAS  Google Scholar 

  • Young TE, Meeley RB, Gallie DR (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825. doi:10.1111/j.1365-313X.2004.02255.x

    Article  PubMed  CAS  Google Scholar 

  • Zacarias L, Reid MS (1992) Inhibition of ethylene action prevents root penetration through compressed media in tomato (Lycopersicon esculentum) seedlings. Physiol Plant 86:301–307. doi:10.1034/j.1399-3054.1992.860217.x

    Article  CAS  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597. doi:10.1007/BF00016491

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Vriezen W, Caeneghem W, Van Montagu M, Van Der Straeten D (2001) Rapid induction of a novel ACC synthase gene in deepwater rice seedlings upon complete submergence. Euphytica 121:137–143. doi:10.1023/A:1012059425624

    Article  CAS  Google Scholar 

  • Zhou Z, de Almeida Engler J, Rouan D, Michiels F, Van Montagu M, Van Der Straeten D (2002) Tissue localization of a submergence-induced 1-aminocyclopropane-1-carboxylic acid synthase in rice. Plant Physiol 129:72–84. doi:10.1104/pp.001206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Todd Young for the initial analysis of the mutant roots and Christian Caldwell for technical assistance. This work was supported by grant NRICGP 2002-35100-12469 from the United States Department of Agriculture and the University of California Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Gallie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallie, D.R., Geisler-Lee, J., Chen, J. et al. Tissue-specific expression of the ethylene biosynthetic machinery regulates root growth in maize. Plant Mol Biol 69, 195–211 (2009). https://doi.org/10.1007/s11103-008-9418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9418-1

Keywords

Navigation