Skip to main content
Log in

Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Type C stay-green mutants are defined as being defective in the pathway of chlorophyll breakdown, which involves pheophorbide a oxygenase (PAO), required for loss of green color. By analyzing senescence parameters, such as protein degradation, expression of senescence-associated genes and loss of photosynthetic capacity, we demonstrate that JI2775, the green cotyledon (i) pea line used by Gregor Mendel to establish the law of genetics, is a true type C stay-green mutant. STAY-GREEN (SGR) had earlier been shown to map to the I locus. The defect in JI2775 is due to both reduced expression of SGR and loss of SGR protein function. Regulation of PAO through SGR had been proposed. By determining PAO protein abundance and activity, we show that PAO is unaffected in JI2775. Furthermore we show that pheophorbide a accumulation in the mutant is independent of PAO. When silencing SGR expression in Arabidopsis pao1 mutant, both pheophorbide a accumulation and cell death phenotype, typical features of pao1, are lost. These results confirm that SGR function within the chlorophyll catabolic pathway is independent and upstream of PAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

chl:

Chlorophyll

chlide:

Chlorophyllide

EST:

Expressed sequence tags

LHCII:

Light harvesting complex of photosystem II

NCCs:

Nonfluorescent chlorophyll catabolites

pheide:

Pheophorbide

PAO:

Pheophorbide a oxygenase

pFCC:

Primary fluorescent chlorophyll catabolite

PS:

Photosystem

RCCR:

Red chlorophyll catabolite reductase

Sgr:

Stay-green

References

  • Akhtar MS, Goldschmidt EE, John I, Rodoni S, Matile P, Grierson D (1999) Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J Exp Bot 50:1115–1122

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmermann J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Chory N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2006) From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597

    Article  PubMed  Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C, Mani J, Moffet M, Ougham H, Roberts L, Thomas A, Weeden N, Thomas H, King I (2007) Cross-species identification of Mendel’s I locus. Science 315:73

    Article  PubMed  CAS  Google Scholar 

  • Bachmann A, Fernández-López J, Ginsburg S, Thomas H, Bouwcamp JC, Solomos T, Matile P (1994) Stay-green genotypes of Phaseolus vulgaris L.: chloroplast proteins and chlorophyll catabolites during foliar senescence. New Phytol 126:593–600

    Article  CAS  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis THN, Hedley C, Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Gupta S, Das S (2006) Small and large scale genomic DNA isolation protocol for chickpea (Cicer arietinum L.), suitable for molecular marker and transgenic analyses. Afr J Biotechnol 5:585–589

    CAS  Google Scholar 

  • Chung DW, Pružinská A, Hörtensteiner S, Ort DR (2006) The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol 142:88–97

    Article  PubMed  CAS  Google Scholar 

  • Costa ML, Civello PM, Chaves AR, Martinez GA (2002) Characterization of Mg-dechelatase activity obtained from Fragaria × ananassa fruit. Plant Physiol Biochem 40:111–118

    Article  CAS  Google Scholar 

  • Efrati A, Eyal Y, Paran I (2005) Molecular mapping of the chlorophyll retainer (cl) mutation in pepper (Capsicum spp.) and screening for candidate genes using tomato ESTs homologous to structural genes of the chlorophyll catabolism pathway. Genome 48:347–351

    PubMed  CAS  Google Scholar 

  • Gray J, Wardzala E, Yang M, Reinbothe S, Haller S, Pauli F (2004) A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Mol Biol 54:39–54

    Article  PubMed  CAS  Google Scholar 

  • Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33

    Article  CAS  Google Scholar 

  • Hellens R, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hilditch P, Thomas H, Rogers L (1986) Leaf senescence in a non-yellowing mutant of Festuca pratensis: Photosynthesis and photosynthetic electron transport. Planta 167:146–151

    Article  CAS  Google Scholar 

  • Hilditch PI, Thomas H, Thomas BJ, Rogers LJ (1989) Leaf senescence in a non-yellowing mutant of Festuca pratensis: proteins of photosystem II. Planta 177:265–272

    Article  CAS  Google Scholar 

  • Horn R, Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex - Time-resolved fluorescence measurements. J Biol Chem 279:44400–44406

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246

    Article  Google Scholar 

  • Hörtensteiner S, Chinner J, Matile P, Thomas H, Donnison IS (2000) Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes. Plant Mol Biol 42:439–450

    Article  PubMed  Google Scholar 

  • Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209

    Article  PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Thomas H, Foyer CH (1997) Chlorophyll a fluorescence, enzyme and antioxidant analyses provide evidence for the operation of alternative electron sinks during leaf senescence in a stay-green mutant of Festuca pratensis. Plant Cell Environ 20:1323–1337

    Article  CAS  Google Scholar 

  • Kreuz K, Tommasini R, Martinoia E (1996) Old enzymes for a new job. Herbicide detoxification in plants. Plant Physiol 111:349–353

    PubMed  CAS  Google Scholar 

  • Kürsteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132:968–978

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9:1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA 97:13401–13406

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mendel G (1866) Versuche über Pflanzenhybriden. Verh Naturforsch Ver Brünn 4:3–47

    Google Scholar 

  • Müller T, Moser S, Ongania K-H, Pružinská A, Hörtensteiner S, Kräutler B (2006) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. ChemBioChem 7:40–42

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kräutler B (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915

    Article  PubMed  CAS  Google Scholar 

  • Oh MH, Kim YJ, Lee CH (2000) Leaf senescence in a stay-green mutant of Arabidopsis thaliana: disassembly process of photosystem I and II during dark-incubation. J Biochem Mol Biol 33:256–262

    CAS  Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J, Jeon J-S, Park Y-I, Paek N-C (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  PubMed  CAS  Google Scholar 

  • Pružinská A, Anders I, Tanner G, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci USA 100:15259–15264

    Article  PubMed  CAS  Google Scholar 

  • Pružinská A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania K-H, Kräutler B, Youn J-Y, Liljegren SJ, Hörtensteiner S (2005) Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed  CAS  Google Scholar 

  • Pružinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441

    Article  PubMed  CAS  Google Scholar 

  • Roca M, James J, Pružinská A, Hörtensteiner S, Thomas H, Ougham H (2004) Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry 65:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007) Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci USA 104:14169–14174

    Article  PubMed  CAS  Google Scholar 

  • Scheumann V, Schoch S, Rüdiger W (1999) Chlorophyll b reduction during senescence of barley seedlings. Planta 209:364–370

    Article  PubMed  CAS  Google Scholar 

  • Sidler M, Hassa P, Hasan S, Ringli C, Dudler R (1998) Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10:1623–1636

    Article  PubMed  CAS  Google Scholar 

  • Strain HH, Cope BT, Svec WA (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol 23:452–476

    Article  Google Scholar 

  • Suzuki T, Kunieda T, Murai F, Morioka S, Shioi Y (2005) Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a. Plant Physiol Biochem 43:459–464

    Article  PubMed  CAS  Google Scholar 

  • Thomas H (1987) Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. Theor Appl Genet 73:551–555

    Article  Google Scholar 

  • Thomas H (1997) Chlorophyll: a symptom and a regulator of plastid development. New Phytol 136:163–181

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Schellenberg M, Vicentini F, Matile P (1996) Gregor Mendel’s green and yellow pea seeds. Bot Acta 109:3–4

    Google Scholar 

  • Vicentini F, Hörtensteiner S, Schellenberg M, Thomas H, Matile P (1995) Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol 129:247–252

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbot D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throuput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • White OE (1916) Inheritance studies in Pisum I Inheritance of cotyledon color. Am Nat 50:530–547

    Article  Google Scholar 

  • Zelisko A, Garcia-Lorenzo M, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102:13699–13704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Burla, University of Zurich, for his help with phylogenetic analyses. We thank S. Schelbert, University of Zurich, for critical reading of the manuscript and I. Anders, University of Bern, for technical support. This work was supported by the Swiss National Science Foundation (3100A0-105389) and the National Center of Competence in Research Plant Survival, research program of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hörtensteiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TIF 433 kb)

(TIF 1312 kb)

(TIF 688 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, S., Mani, J. & Hörtensteiner, S. Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67, 243–256 (2008). https://doi.org/10.1007/s11103-008-9314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9314-8

Keywords

Navigation