Skip to main content
Log in

Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam G, Mullen JA, Kindle KL (1997) Retrofitting YACs for direct DNA transfer into plant cells. Plant J 11:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Adawy SS, Stupar RM, Jiang J (2004) Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability germplasm with high type II culture formation response. Maize Genet Coop News lett 65:92–93

    Google Scholar 

  • Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delsen M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161–164

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Bi YM, Brugiere N, Arnoldo M, Rothstein SJ (2000) The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica. Proc Natl Acad Sci USA 97:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable beta-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645

    Article  PubMed  CAS  Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88:7006–7010

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JM, Coe EH, Chao S (1996) Cloning maize telomeres by complementation in Saccharomyces cerevisiae. Genome 39:736–748

    Article  PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 93:9975–9979

    Article  PubMed  CAS  Google Scholar 

  • He RF, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He GC (2003) Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 321:113–121

    Article  PubMed  CAS  Google Scholar 

  • He RF, Wang YY, Du B, Tang M, You AQ, Zhu LL, He GC (2006) Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Genetica Sinica 33:269–276

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jones RN, Rees H (1982) B chromosomes. Academic Press, London

    Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  CAS  Google Scholar 

  • Kilby NJ, Snaith MR, Murray JA (1993) Site-specific recombinases: tools for genome engineering. Trends Genet 9:413–421

    Article  PubMed  CAS  Google Scholar 

  • Kirschner LS, Stratakis CA (1999) Large-scale preparation of sequence-ready bacterial artificial chromosome DNA using QIAGEN columns. Biotechniques 27:72–74

    PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24:3784–3789

    Article  PubMed  CAS  Google Scholar 

  • Medberry SL, Dale E, Qin M, Ow DW (1995) Intra-chromosomal rearrangements generated by Cre-lox site-specific recombination. Nucleic Acids Res 23:485–490

    Article  PubMed  CAS  Google Scholar 

  • Mullen J, Adam G, Blowers A, Earle ED (1998) Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol Breed 4:449–457

    Article  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Osborne BI, Wirtz U, Baker B (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7:687–701

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (1996) Recombinase-directed chromosome engineering in plants. Curr Opin Biotechnol 7:181–186

    Article  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Lee E, Zankel T, Ow DW (1995) Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucleic Acids Res 23:1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Renauld H, Aparicio OM, Zierath PD, Billington BL, Chhablani SK, Gottschling DE (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev 7:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  PubMed  CAS  Google Scholar 

  • Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics 5:240–253

    Article  PubMed  CAS  Google Scholar 

  • Song R, Segal G, Messing J (2004) Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res 32:e189

    Article  PubMed  CAS  Google Scholar 

  • Sprung CN, Sabatier L, Murnane JP (1996) Effect of telomere length on telomeric gene expression. Nucleic Acids Res 24:4336–4340

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121

    Article  PubMed  CAS  Google Scholar 

  • Stuurman J, de Vroomen MJ, Nijkamp HJ, van Haaren MJ (1996) Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol Biol 32:901–913

    Article  PubMed  CAS  Google Scholar 

  • Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 45:242–248

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    Article  PubMed  CAS  Google Scholar 

  • Van Eck JM, Blowers AD, Earle ED (1995) Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep 14:299–304

    Article  Google Scholar 

  • van Haaren MJ, Ow DW (1993) Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Biol 23:525–533

    Article  PubMed  Google Scholar 

  • Vega JM, Yu W, Kennon A, Chen X, Zhang Z (2008) Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays L.) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Kato A, Birchler JA (2006a) Characterization of a maize isochromosome 8S•8S. Genome 49:700–706

    Article  PubMed  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006b) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Pierce D (1999) Methods for Agrobacterium-mediated transformation. United States Patent No 5981840

  • Zhou LY, Jiang DG, Wu H, Zhuang CX, Liu YG, Mei MT (2005) [Development of transformation system of rice based on transformation-competent artificial chromosome (TAC) vector]. Acta Genetica Sinica 32:514–518

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. C.M. Hamilton for BIBAC vectors (pCH20 and BIBAC1.Y30) and helper plasmid pCH32, D. Ow for the cre/lox recombination constructs pED97 and pHK52, P. Quail for the pAHC25 construct, and E. Richards for the pATt4 Arabidopsis telomere construct. We thank the University of Missouri DNA Core for sequencing. JMV thanks M. González-García for help in the preparation of some of the figures. Maize transformation experiments were conducted in the Plant Transformation Core Facility at the University of Missouri-Columbia. JMV was supported partially by an EMBO long-term fellowship. The funding was provided by a grant from the University of Missouri-Monsanto proteomics grant program and from NSF grant DBI 0423898. The materials described are available for research purposes from the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, J.M., Yu, W., Han, F. et al. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol 66, 587–598 (2008). https://doi.org/10.1007/s11103-007-9276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9276-2

Keywords

Navigation