Skip to main content
Log in

Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The conserved protein CBF5, initially regarded as a centromere binding protein in yeast and higher plants, was later found within nucleoli and in Cajal bodies of yeast and metazoa. There, it is assumed to be involved in posttranscriptional pseudouridinylation of various RNA species that might be important for RNA processing. We found EYFP-labeled CBF5 of A. thaliana to be located within nucleoli and Cajal bodies, but neither at centromeres nor somewhere else on chromosomes. Arabidopsis mutants carrying a homozygous T-DNA insertion at the CBF5 locus were lethal. Yeast two-hybrid and mRNA expression analyses demonstrated that AtCBF5 is co-expressed and interacts with a previously uncharacterized protein containing a conserved NAF1 domain, presumably involved in H/ACA box snoRNP biogenesis. The homologous yeast protein has been shown to contribute to RNA pseudouridinylation. Thus, AtCBF5 might have an essential function in RNA processing rather than being a kinetochore protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3AT:

3-amino-triazole

BiFC:

Bimolecular fluorescence complementation

CB:

Cajal bodies

CDD:

Conserved domain database

DAPI:

4′,6-diamidino-2-phenylindole

DIC:

Differential interference contrast

PPT:

Phosphinotricine

snRNAs:

Small nuclear RNAs

snRNPs:

Small nuclear ribonucleoproteins

snoRNAs:

Small nucleolar RNAs

snoRNPs:

Small nucleolar ribonucleoproteins

TMG-capped-snRNA:

tri-methylguanosine-capped snRNA

Ψ:

Pseudouridine

References

  • Andrade LEC, Tan EM, Chan EKL (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci USA 90:1947–1951

    Article  PubMed  Google Scholar 

  • Arnez JG, Steitz TA (1994) Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33:7560–7567

    Article  PubMed  Google Scholar 

  • Bachellerie JP, Cavaillé J, Hüttenhofer A (2002) The expanding snoRNA world. Biochimie 84:775–790

    Article  PubMed  Google Scholar 

  • Barth S, Hury A, Liang XH et al (2005) Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 280:34558–34568

    Article  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Life Sci 316:1194–1199

    Google Scholar 

  • Brasch K, Ochs RL (1992) Nuclear bodies (NBs): a newly “rediscovered” organelle. Exp Cell Res 202:211–223

    Article  PubMed  Google Scholar 

  • Cadwell C, Yoon HJ, Zebarjadian Y et al (1997) The yeast nucleolar protein Cbf5p is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol Cell Biol 17:6175–6183

    PubMed  Google Scholar 

  • Darzacq X, Jády BE, Verheggen C et al (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756

    Article  PubMed  Google Scholar 

  • Darzacq X, Kittur N, Roy S et al (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173:207–218

    Article  PubMed  Google Scholar 

  • Dez C, Noaillac-Depeyre J, Caizergues-Ferrer M et al (2002) Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol Cell Biol 22:7053–7065

    Article  PubMed  Google Scholar 

  • Fan HY, Hu Y, Tudor M et al (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12:999–1010

    Article  PubMed  Google Scholar 

  • Fatica A, Dlakic M, Tollervey D (2002) Naf1p is a box H/ACA snoRNP assembly factor. RNA 8:1502–1514

    PubMed  Google Scholar 

  • Förch P, Puig O, Martinez C et al (2002) The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5´splice sites. EMBO J 21:6882–6892

    Article  PubMed  Google Scholar 

  • Ganot P, Bortolin M-L, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    Article  PubMed  Google Scholar 

  • Gu X, Yu M, Ivanetich KM et al (1998) Molecular recognition of tRNA by tRNA pseudouridine 55 synthase. Biochemistry 37:339–343

    Article  PubMed  Google Scholar 

  • Heiss NS, Knight SW, Vulliamy TJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet 19:32–38

    Article  PubMed  Google Scholar 

  • Heiss NS, Girod A, Salowsky R et al (1999) Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum Mol Genet 8:2515–2524

    Article  PubMed  Google Scholar 

  • Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  PubMed  Google Scholar 

  • Jasencakova Z, Meister A, Walter J et al (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    Article  PubMed  Google Scholar 

  • Jiang W, Middleton K, Yoon H-J et al (1993) An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol 13:4884–4893

    PubMed  Google Scholar 

  • Kiss AM, Jády BE, Darzacq X et al (2002) A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 30:4643–4649

    Article  PubMed  Google Scholar 

  • Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622

    Article  PubMed  Google Scholar 

  • Kiss-László Z, Henry Y, Bachellerie JP et al (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088

    Article  PubMed  Google Scholar 

  • Koonin EV (1996) Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res 24:2411–2415

    Article  PubMed  Google Scholar 

  • Kukalev AS, Enukashvili NI, Podgornaia OI (2005) Multifunctional nuclear protein NAP57 specifically interacts with dead RNA-helicase p68. Tsitologiia 47:533–539

    PubMed  Google Scholar 

  • Lafontaine DLJ, Bousquet-Antonelli C, Henry Y et al (1998) The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 12:527–537

    Article  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J et al (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  PubMed  Google Scholar 

  • Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443:302–307

    Article  PubMed  Google Scholar 

  • Maceluch J, Kmieciak M, Szweykowska-Kuliáska Z et al (2001) Cloning and characterization of Arabidopsis thaliana AtNAP57 – a homologue of yeast pseudouridine synthase Cbf5p. Acta Biochim Pol 48:699–709

    PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  Google Scholar 

  • Massenet S, Mougin A, Branlant S (1998) Posttranscriptional modifications in the U small nuclear RNAs. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 201–227

    Google Scholar 

  • McBride AE, Silver PA (2001) State of the arg: protein methylation at arginine comes of age. Cell 106:5–8

    Article  PubMed  Google Scholar 

  • Meier UT, Blobel G (1994) NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol 127:1505–1514

    Article  PubMed  Google Scholar 

  • Mélèse T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  • Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573

    Article  PubMed  Google Scholar 

  • Nurse K, Wrzesinski J, Bakin A et al (1995) Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA 1:102–112

    PubMed  Google Scholar 

  • Pendle AF, Clark GP, Boon R et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  Google Scholar 

  • Phillips B, Billin AN, Cadwell C et al (1998) The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol Gen Genet 260:20–29

    Article  PubMed  Google Scholar 

  • Rautengarten C, Steinhauser D, Büssis D et al (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol 1:e40

    Article  PubMed  Google Scholar 

  • Reddy R, Busch H (1983) Small nuclear RNAs and RNA processing. Prog Nucleic Acid Res Mol Biol 30:127–162

    Article  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    Article  PubMed  Google Scholar 

  • Steinhauser D, Usadel B, Luedemann A et al (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20:3647–3651

    Article  PubMed  Google Scholar 

  • ten Hoopen R, Manteuffel R, Doležel J et al (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482–489

    Article  PubMed  Google Scholar 

  • Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9:337–342

    Article  PubMed  Google Scholar 

  • Walter M, Chaban C, Schütze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  PubMed  Google Scholar 

  • Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23:1857–1867

    Article  PubMed  Google Scholar 

  • Yang PK, Rotondo G, Porras T et al (2002) The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J Biol Chem 277:45235–45242

    Article  PubMed  Google Scholar 

  • Zhao X, Yu YT (2007) Incorporation of 5-fluorouracil into U2 snRNA blocks pseudouridylation and pre-mRNA splicing in vivo. Nucleic Acids Res 35:550–558

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrea Kunze and Rita Schubert for technical assistance, Bernhard Claus for help with confocal microscopy, Jörg Fuchs for flow-sorting of nuclei, Alice Navratilova for help with examination of field bean hairy root cultures, Sabina Klatte and Alexander Kukalev for helpful discussions, Karin Lipfert and Ursula Tiemann for help with preparation of figures. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to I.S. (Schu 951/9-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Lermontova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lermontova, I., Schubert, V., Börnke, F. et al. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Mol Biol 65, 615–626 (2007). https://doi.org/10.1007/s11103-007-9226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9226-z

Keywords

Navigation