Skip to main content
Log in

Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Based upon the phenotype of young, dark-grown seedlings, a cytokinin-resistant mutant, cnr1, has been isolated, which displays altered cytokinin- and auxin-induced responses. The mutant seedlings possess short hypocotyls and open apical hooks (in dark), and display agravitropism, hyponastic cotyledons, reduced shoot growth, compact rosettes and short roots with increased adventitious branching and reduced number of root hairs. A number of these features invariably depend upon auxin/cytokinin ratio but the cnr1 mutant retains normal sensitivity towards auxin as well as auxin polar transport inhibitor, TIBA, although upregulation of primary auxin-responsive Aux/IAA genes is reduced. The mutant shows resistance towards cytokinin in hypocotyl/root growth inhibition assays, displays reduced regeneration in tissue cultures (cytokinin response) and decreased sensitivity to cytokinin for anthocyanin accumulation. It is thus conceivable that due to reduced sensitivity to cytokinin, the cnr1 mutant also shows altered auxin response. Surprisingly, the mutant retains normal sensitivity to cytokinin for induction of primary response genes, the type-A Arabidopsis response regulators, although the basal level of their expression was considerably reduced as compared to the wild-type. The zeatin and zeatin riboside levels, as estimated by HPLC, and the cytokinin oxidase activity were comparable in the cnr1 mutant and the wild-type. The hypersensitivity to red light (in hypocotyl growth inhibition assay), partial photomorphogenesis in dark, and hypersensitivity to sugars, are some other features displayed by the cnr1 mutant. The lesion in the cnr1 mutant has been mapped to the top of chromosome 1 where no other previously known cytokinin-resistant mutant has been mapped, indicating that the cnr1 mutant defines a novel locus involved in hormone, light and sugar signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Cork A, Williamson RE, Gorst JR (1995) STUNTED PLANT1, a gene required for expansion in rapidly elongating but not in dividing cells and mediating root growth responses to applied cytokinin. Plant Physiol 107:233–243

    PubMed  CAS  Google Scholar 

  • Bharti AK, Khurana JP (2003) Molecular characterization of transparent testa (tt) mutants of Arabidopsis thaliana (ecotype Estland) impaired in flavonoid biosynthetic pathway. Plant Sci 165:1321–1332

    Article  CAS  Google Scholar 

  • Binns AN, Labriola J, Black RC (1987) Initiation of auxin autonomy in Nicotiana glutinosa cells by the cytokinin-biosynthesis gene from Agrobacterium tumefaciens. Planta 171:539–548

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  • Cabrera y Poch HL, Peto CA, Chory J (1993) A mutation in the Arabidopsis DET3 gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis. Plant J 4:671–681

    Article  Google Scholar 

  • Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Onckelen HV, Sangwan-Norreel BS, Sangwan RS (2002) hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 30:273–287

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Letham S, Craig S (1993) amp1—a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907–914

    Article  CAS  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989) Arabidopsis thaliana that develops as a light grown plant in the absence of light. Cell 58:991–999

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Reinecke D, Sim S, Washburn T, Brenner M (1994) A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol 104:339–347

    PubMed  CAS  Google Scholar 

  • Coenen C, Lomax T (1997) Auxin–cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  CAS  Google Scholar 

  • Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108:47–57

    PubMed  CAS  Google Scholar 

  • Deikman J, Ulrich M (1995) A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta 195:440–449

    Article  PubMed  CAS  Google Scholar 

  • Deng X-W, Casper T, Quail PH (1991) cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182

    PubMed  CAS  Google Scholar 

  • Eklof S, Astot C, Blackwell J, Moritz T, Olsson O, Sandborg G (1997) Auxin–cytokinin interactions in wild type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Google Scholar 

  • Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    PubMed  CAS  Google Scholar 

  • Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998) How does auxin turn on genes? Plant Physiol 118:341–347

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826

    Article  PubMed  CAS  Google Scholar 

  • Hobbie L, Timpte C, Estelle M (1994) Molecular genetics of auxin and cytokinin. Plant Mol Biol 26:1499–1519

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(Suppl.):S47–S59

    PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Koizumi N, Kusano T, Sano H (1999) Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol 121:813–820

    Article  PubMed  CAS  Google Scholar 

  • Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006a) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006b) Structure and expression analysis of auxin-responsive AUX/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006c) Molecular characterization and differential expression of cytokinin-responsive type-A response regulator genes in rice (Oryza sativa). BMC Plant Biol 6:1

    Article  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006d) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa), Genomics (in press; available online May 15, 2006)

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP, Kochhar A, Tyagi AK (1998) Photosensory perception and signal transduction in higher plants—molecular genetic analysis. Crit Rev Plant Sci 17:465–539

    CAS  Google Scholar 

  • Khurana JP, Tyagi AK, Khurana P, Kochhar A, Jain PK, Raychaudhuri A, Chawla R, Bharti AK, Laxmi A, Dasgupta U (2001) Molecular genetic analysis of constitutive photomorphogenic mutants of Arabidopsis. In: Sopory SK, Maheshwari SC, Oelmuller R (eds) Signal transduction in plants—current advances. Kluwer Academic Publishers, Dordrecht, pp. 25–37

    Google Scholar 

  • Kiba T, Yamada H, Mizuno T (2002) Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol 43:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Aoki K, Sakakibara H, Mizuno T (2004) Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol 45:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 12:2023–2037

    Article  Google Scholar 

  • Kubasek WL, Shirley BW, Mckillop A, Goodman HM, Brigs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1239

    Article  PubMed  CAS  Google Scholar 

  • Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  PubMed  CAS  Google Scholar 

  • Laxmi A, Paul LK, Peters JL, Khurana JP (2004) Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Mol Biol 56:185–201

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395

    Article  PubMed  CAS  Google Scholar 

  • Libreros-Minotta CA, Tipton PA (1995) A colorimetric assay for cytokinin oxidase. Anal Biochem 231:339–341

    Article  PubMed  CAS  Google Scholar 

  • McClure JW (1975) Physiology and function of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Academic, New York, pp 970–1055

    Google Scholar 

  • Medford JI, Horgan R, El-Sawi Z, Klee HJ (1989) Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell 1:403–413

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW, Meinke LK, Showalter TC, Schissel AM, Mueller LA, Tzafrir I (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131:409–418

    Article  PubMed  CAS  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Morris RO, Bilyeu KD, Laskey JG, Cheikh NN (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua N-H (1988) Analysis of gene expression in transgenic plants. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Doerdrecht, The Netherlands, pp B4/1–B4/29

    Google Scholar 

  • Nemeth K, Salchert K, Putnoky P, Bhalerao R, Koncz-Kalman Z, Stankovic-Stangeland B, Bako L, Mathur J, Okresz L, Stabel S, Geigenberger P, Stitt M, Redei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12:3059–3073

    PubMed  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044

    Article  PubMed  Google Scholar 

  • Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Biophys Res Commun 293:806–815

    Article  PubMed  CAS  Google Scholar 

  • Peters JL, Constandt H, Neyt P, Cnops G, Zethof J, Zabeau M, Gerats T (2001) A physical amplified-fragment length polymorphism map of Arabidopsis. Plant Physiol 127:1579–1589

    Article  PubMed  CAS  Google Scholar 

  • Peters JL, Cnops G, Neyt P, Zethof J, Cornelis K, Lijsebettens MV, Gerats T (2003a) An AFLP-based genome-wide mapping strategy. Theor Appl Genet 108:321–327

    Article  Google Scholar 

  • Peters JL, Cnudde F, Gerats T (2003b) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    Article  CAS  Google Scholar 

  • Roldan MC, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapter JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590

    Article  PubMed  CAS  Google Scholar 

  • Sa G, Mi M, He-chun Y, Ben-ye L, Guo-feng L, Kang C (2001) Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci 160:691–698

    Article  PubMed  Google Scholar 

  • Sakai H, Aoyama T, Bono H, Oka A (1998) Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol 39:1232–1239

    PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Babiychuk E, Kushnir S, Durski A, Vierstra RD (2002) Cytokinin growth responses in Arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14:17–32

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD (2003) The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 15:965–980

    Article  PubMed  CAS  Google Scholar 

  • Smigocki AC (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol 16:105–115

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR, Ogren WL (1982) Isolation of photorespiration mutants in Arabidopsis thaliana. In: Edelman M, Hallick R, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 129–139

    Google Scholar 

  • Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol 42:107–113

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ishikawa K, Yamashino T, Mizuno T (2002) An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol 43:123–129

    Article  PubMed  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294:1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T, Mizuno T (2004) Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiol 45:28–39

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, Mizuno T, Sugiyama T (1998) Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett 429:259–262

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Tyagi AK, Khurana JP (2001) OsIAA1, an Aux/IAA cDNA from rice, and its expression as influenced by auxin and light. DNA Res 8:1–11

    Article  Google Scholar 

  • Thakur JK, Jain M, Tyagi AK, Khurana JP (2005) Exogenous auxin enhances the degradation of a light down-regulated and nuclear localized OsiIAA1, an Aux/IAA protein from rice, via proteasome. Biochim Biophys Acta 1730:196–205

    PubMed  CAS  Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell␣16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi C, Koizumi H, Suzuki T, Mizuno T (2001a) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42:231–235

    Article  CAS  Google Scholar 

  • Ueguchi C, Sato S, Kato T, Tabata S (2001b) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  CAS  Google Scholar 

  • Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber JJ (1998a) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427

    CAS  Google Scholar 

  • Vogel JP, Woestle KE, Theologies A, Kieber JJ (1998b) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  CAS  Google Scholar 

  • Vonk CR, Davelaar E, Ribot SA (1986) The role of cytokinins in relation to flower-bud blasting in Iris cv. Ideal: cytokinin determination by an improved enzyme linked immunosorbent assay. Plant Growth Regul 4:65–74

    Article  CAS  Google Scholar 

  • Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research, vol. II. Martinus Nijhoff/Dr W. Junk Publishers, The Hague, pp 11.1/9–12

    Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Hanaki N, Imamura A, Ueguchi C, Mizuno T (1998) An Arabidopsis protein that interacts with the cytokinin-inducible response regulator, ARR4, implicated in the His–Asp phosphorylay signal transduction. FEBS Lett 436:76–80

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Yu H, Xu Y, Goh CJ (2003) Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1. FEBS Lett 555:291–296

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    Article  CAS  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Seeds of mutants, rty1 and det3, and cDNA clone of gene IBC7/ARR6 were obtained from ABRC, Ohio, USA. The Arabidopsis cDNA clones for RBCS, CAB-140 and 25S RNA were generously provided by Professor E. Tobin, UCLA, USA. We thank Arjan Tange and Ive Logister for technical help in the map-based cloning experiments. This work was supported financially by the Department of Biotechnology, Government of India, and the University Grants Commission, New Delhi. AL, LKP and AR are thankful to the Council of Scientific and Industrial Research, New Delhi, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra P. Khurana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laxmi, A., Paul, L.K., Raychaudhuri, A. et al. Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol Biol 62, 409–425 (2006). https://doi.org/10.1007/s11103-006-9032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9032-z

Keywords

Navigation