Skip to main content
Log in

A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) seeds contain Bowman–Birk proteinase inhibitors, which are ineffective against the digestive proteinases of larvae of the insect pest Helicoverpa armigera. We have identified and purified a low expressing proteinase inhibitor (PI), distinct from the Bowman–Birk Inhibitors and active against H. armigera gut proteinases (HGP), from chickpea seeds. N-terminal sequencing of this HGP inhibitor revealed a sequence similar to reported pea (Pisum sativum) and chickpea α-l-fucosidases and also homologous to legume Kunitz inhibitors. The identity was confirmed by matrix assisted laser desorption ionization – time of flight analysis of tryptic peptides and isolation of DNA sequence coding for the mature protein. Available sequence data showed that this protein forms a distinct phylogenetic cluster with Kunitz inhibitors from Glycine max, Medicago truncatula, P. sativum and Canavalia lineata. The isolated coding sequence was cloned into a yeast expression vector and produced as a recombinant protein in Pichia pastoris. α-l-fucosidase activity was not detectable in purified or recombinant protein, by solution assays. The recombinant protein did not inhibit chymotrypsin or subtilisin activity but did exhibit stoichiometric inhibition of trypsin, comparable to soybean Kunitz trypsin inhibitor. The recombinant protein exhibited higher inhibition of total HGP activity as compared to soybean kunitz inhibitor, even though it preferentially inhibited HGP-trypsins. H. armigera larvae fed on inhibitor-incorporated artificial diet showed significant reduction in average larval weight after 18 days of feeding demonstrating potent antimetabolic activity. The over-expression of this gene in chickpea could act as an endogenous source of resistance to H. armigera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BApNA:

Benzoyl-DL-Arginyl-para-Nitroanilide

BBI:

Bowman Birk type inhibitor

BSM:

Basal Salts Medium

CBB-R250:

Coomassie Brilliant Blue R-250

HGP:

Helicoverpa armigera Gut Proteinases

HGPI:

Helicoverpa armigera Gut Proteinases Inhibitor

HRP:

Horseradish Peroxidase

LB:

Luria Bertonii

LSLB:

Low Salt Luria Bertonii

TOF:

matrix assisted laser desorption ionization–time of flight

PAGE:

Polyacrylamide Gel Electrophoresis

PCR:

Polymerase Chain Reaction

PI:

Proteinase Inhibitor

PVDF:

Polyvinylene Difluoride

SAAAPLpNA:

Succinyl-Alanyl-Alanyl-Alanyl-Prolyl-Leucyl-para-Nitroanilide

SAAPFpNA:

Succinyl-Alanyl-Alanyl-Prolyl-Phenylalanyl-para-Nitroanilide

SDS:

Sodium Dodecyl Sulphate

SKTI:

Soybean Kunitz Trypsin Inhibitor

YPDS:

Yeast Extract Peptone Dextrose Sorbitol

YPG:

Yeast Extract Peptone Glycerol

References

  • S.F. Altschul W. Gish W. Miller E.W. Myers D.J. Lipman (1990) ArticleTitleBasic local alignment search tool J. Mol. Biol. 215 403–410

    Google Scholar 

  • C. Augur V. Stiefel A. Darvill P. Albersheim P. Puigdomenech (1995) ArticleTitleMolecular cloning and pettern of expression of an l-fucosidase gene from pea seedlings J. Biol. Chem. 270 24839–24843

    Google Scholar 

  • M. Belew D. Eaker (1976) ArticleTitleThe trypsin and chymotrypsin inhibitors in chickpeas (Cicer arietinumL). Identification of the trypsin-reactive site, partial-amino-acid sequence and further physico-chemical properties of the major inhibitor Euro. J. Biochem. 62 499–508

    Google Scholar 

  • M. Belew J. Porath L. Sundberg (1975) ArticleTitleThe trypsin and chymotrypsin inhibitors in chickpeas (Cicer arietinumL). Purification and properties of the inhibitors Euro. J. Biochem. 60 247–258

    Google Scholar 

  • Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. Improved prediction of signal peptides – SignalP 3.0. J. Mol. Biol., in press

  • Y. Birk (1985) ArticleTitleThe Bowman–Birk inhibitor. Trypsin- and chymotrypsin-inhibitor from soybeans Int. J. Pept. Protein Res. 25 113–131

    Google Scholar 

  • D. Boulter (1993) ArticleTitleInsect pest control by copying nature using genetically engineered crops Phytochemistry 34 1453–1466

    Google Scholar 

  • D.E. Bowman (1946) ArticleTitleDifferentiation of soyabean antitrypsin factors Proc. Soc. Exp. Biol. Med. 63 547–550

    Google Scholar 

  • D.P. Bown H.S. Wilkinson J.A. Gatehouse (1997) ArticleTitleDifferentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families Insect Biochem. Mol. Biol. 27 625–638

    Google Scholar 

  • R.M. Broadway (1996) ArticleTitlePlant dietary proteinase inhibitors alter complement of midgut proteases Arch. Insect Biochem. Physiol. 32 39–53

    Google Scholar 

  • R.M. Broadway S.S. Duffey (1986) ArticleTitlePlant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua J. Insect. Physiol. 32 827–833

    Google Scholar 

  • C.R. Carlini M.F. Grossi-de-Sa (2002) ArticleTitlePlant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides Toxicon 40 1515–1539

    Google Scholar 

  • N.P. Chougule V.K. Hivrale P.J. Chhabda A.P. Giri M.S. Kachole (2003) ArticleTitleDifferential inhibition of Helicoverpa armigera gut proteinases by proteinase inhibitors of pigeonpea (Cajanus cajan) and its wild relatives Phytochemistry 64 181–187

    Google Scholar 

  • J.K. Dattagupta A. Podder C. Chakrabarti U. Sen D. Mukhopadhyay S.K. Dutta M. Singh (1999) ArticleTitleRefined crystal structure (2.3 A) of a double-headed winged bean alpha-chymotrypsin inhibitor and location of its second reactive site Proteins 35 321–331

    Google Scholar 

  • F. deLeo R. Gallerani (2002) ArticleTitleThe mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralislarvae fed on transgenic plants Insect Biochem. Mol. Biol. 32 489–496

    Google Scholar 

  • M. doSocorro M. Cavalcanti M.L. Oliva H. Fritz M. Jochum R. Mentele M. Sampaio L.C. Coelho I.F. Batista C.A. Sampaio (2002) ArticleTitleCharacterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii Biochem. Biophys. Res. Commun. 291 635–639

    Google Scholar 

  • H.S. Edmonds L.N. Gatehouse V.A. Hilder J.A. Gatehouse (1996) ArticleTitleThe inhibitory effects of the cysteine protease inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata howardi) Entomologia et Experimentalis Applicata 78 83–94

    Google Scholar 

  • N. Ferry M.G. Edwards J.A. Gatehouse A.M.R. Gatehouse (2004) ArticleTitlePlant–insect interactions: molecular approaches to insect resistance Curr. Op. Biotechnol. 15 155–161

    Google Scholar 

  • O.L. Franco M.F. Grosside Sa M.P. Sales L.V. Mello A.S. Oliveira D.J. Rigden (2002) ArticleTitleOverlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora Proteins 49 335–341 Occurrence Handle10.1002/prot.10228 Occurrence Handle1:CAS:528:DC%2BD38XosV2isLc%3D Occurrence Handle12360523

    Article  CAS  PubMed  Google Scholar 

  • F. Garcia-Olmedo G. Salcedo R. Sanchez-Monge L. Gomez J. Roys P. Carbonero (1987) ArticleTitlePlant proteinaceous inhibitors of proteases and amylases Oxford Surv. Plant Mol. Cell. Biol. 4 275–334

    Google Scholar 

  • L.N. Gatehouse A.L. Shannon E.P.J. Burgess J.T. Christeller (1997) ArticleTitleCharacterization of major midgut proteinase cDNAs from Helicoverpa armigeralarvae and changes in gene expression in response to four proteinase inhibitors in the diet Insect Biochem. Mol. Biol. 27 929–944

    Google Scholar 

  • A. Gattiker E. Gasteiger A. Bairoch (2002) ArticleTitleScanProsite: a reference implementation of a PROSITE scanning tool App. Bioinfo. 1 107–108

    Google Scholar 

  • A.P. Giri A.M. Harsulkar V.V. Deshpande M.N. Sainani V.S. Gupta P.K. Ranjekar (1998) ArticleTitleChickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases Plant Physiol. 116 393–401

    Google Scholar 

  • A.P. Giri A.M. Harsulkar M.S.B. Ku V.S. Gupta V.V. Deshpande P.K. Ranjekar V.R. Franceschi (2003) ArticleTitleIdentification of potent inhibitors of Helicoverpa armigera gut proteinases from winged bean seeds Phytochemistry 63 523–532

    Google Scholar 

  • G.P. Gupta G.K. Mahapatro A. Chandra (2000) ArticleTitleBio-potency of insecticidal crystal proteins of Bacillus thuringiensis against cotton (Gossypium hirsutum) bollworms Ind. J. Agri. Sci. 70 194–196

    Google Scholar 

  • D. Gussow T. Clackson (1989) ArticleTitleDirect clone characterization from plaques and colonies by the polymerase chain reaction Nucl. Acids Res. 17 4000

    Google Scholar 

  • A.M. Harsulkar A.P. Giri V.S. Gupta M.N. Sainani V.V. Deshpande A.G. Patankar P.K. Ranjekar (1998) ArticleTitleCharacterization of Helicoverpa armigera gut proteinases and their interaction with proteinase inhibitors using gel X-ray film contact print technique Electrophoresis 19 1397–1402

    Google Scholar 

  • A.M. Harsulkar A.P. Giri A.G. Patankar V.S. Gupta M.N. Sainani P.K. Ranjekar V.V. Deshpande (1999) ArticleTitleSuccessive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigeragut proteinases and larval growth Plant Physiol. 121 497–506

    Google Scholar 

  • A. Heibges H. Glaczinski A. Ballvora F. Salamini C. Gebhardt (2003a) ArticleTitleStructural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosumL.) Mol. Genet. Genom. 269 526–534

    Google Scholar 

  • A. Heibges F. Salamini C. Gebhardt (2003b) ArticleTitleFunctional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosumL.) Mol. Genet. Genom. 269 535–541

    Google Scholar 

  • V.A. Hilder A.M.R. Gatehouse S.F. Sheerman R.F. Barker D. Boulter (1987) ArticleTitleA novel mechanism of insect resistance engineered into tobacco Nature 330 160–163

    Google Scholar 

  • M.D. Jibson Y. Birk T.A. Bewley (1981) ArticleTitleCircular dichroism spectra of trypsin and chymotrypsin complexes with Bowman–Birk or chickpea trypsin inhibitor Int. J. Pept. Protein Res. 18 26–32

    Google Scholar 

  • M.A. Jongsma P.L. Bakker J. Peters D. Bosch W.J. Stiekema (1995) ArticleTitleAdaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition Proc. Natl. Acad. Sci. USA 92 8041–8045

    Google Scholar 

  • M.A. Jongsma C. Bolter (1997) ArticleTitleThe adaptation of insects to plant protease inhibitors J. Insect Physiol. 43 885–895

    Google Scholar 

  • L. Jouanin M. Bonade-Bottino C. Girard G. Morrot M. Giband (1998) ArticleTitleTransgenic plants for insect resistance Plant Sci. 131 1–11

    Google Scholar 

  • T. Komiyama B. VanderLugt M. Fugere R. Day R.J. Kaufman R.S. Fuller (2003) ArticleTitleOptimization of protease–inhibitor interactions by randomizing adventitious contacts Proc. Natl. Acad. Sci. USA 100 8205–8210

    Google Scholar 

  • S. Krauchenco S.C. Pando S. Marangoni I. Polikarpov (2003) ArticleTitleCrystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds Biochem. Biophys. Res. Commun. 312 1303–1308

    Google Scholar 

  • M. Kunitz (1945) ArticleTitleCrystallization of a trypsin inhibitor from soyabean Science 101 668–669

    Google Scholar 

  • U.K. Laemmli (1970) ArticleTitleCleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227 680–685 Occurrence Handle5432063

    PubMed  Google Scholar 

  • M. Laskowski SuffixJr. S.J. Port M. Tashiro H.E. Whatley (1998) ArticleTitlePositive Darwinian selection in evolution of protein inhibitors of serine proteinases. Cold Spring Harbor Symp Plant Biol. 52 545–553

    Google Scholar 

  • M. Moos SuffixJr. N.Y. Nguyen T.Y. Liu (1998) ArticleTitleReproducible high yield sequencing of proteins electrophoretically separated and transferred to an inert support J. Biol. Chem. 263 6005–6008

    Google Scholar 

  • L.L. Murdock R.E. Shade (2002) ArticleTitleLectins and protease inhibitors as plant defenses against insects J. Agric. Food. Chem. 50 6605–6611

    Google Scholar 

  • D. Mukhopadhyay (2000) ArticleTitleThe molecular evolutionary history of a winged bean alpha-chymotrypsin inhibitor and modeling of its mutations through structural analyses J. Mol. Evol. 50 214–223

    Google Scholar 

  • S. Nagarkatti Satyaprakash (1974) Rearing Heliothis armigera (Hubn) on Artificial Diet. Technical Bulletin 17 Commonwealth Institute of Biological Control Banglore.

    Google Scholar 

  • A.G. Patankar A.M. Harsulkar A.P. Giri V.S. Gupta M.N. Sainani P.K. Ranjekar V.V. Deshpande (1999) ArticleTitleDiversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and it’s wild relatives Theor. App. Genet. 99 719–726

    Google Scholar 

  • A.G. Patankar A.P. Giri A.M. Harsulkar M.N. Sainani V.V. Deshpande P.K. Ranjekar V.S. Gupta (2001) ArticleTitleComplexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest Insect Biochem. Mol. Biol. 31 453–464

    Google Scholar 

  • D.N. Perkins D.J. Pappin D.M. Creasy J.S. Cottrell (1999) ArticleTitleProbability-based protein identification by searching sequence databases using mass spectrometry data Electrophoresis 20 3551–3567 Occurrence Handle10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 Occurrence Handle1:CAS:528:DC%2BD3cXhtF2ntw%3D%3D Occurrence Handle10612281

    Article  CAS  PubMed  Google Scholar 

  • M.M. Pichare M.S. Kachole (1994) ArticleTitleDetection of electrophoretically separated proteinase inhibitors using X-ray film J. Biochem. Biophys. Meth. 28 215–224

    Google Scholar 

  • C.A. Ryan (1990) ArticleTitleProteinase inhibitors in plants: genes for improving defenses against insects and pathogens Ann. Rev. Phytopathol. 28 425–449

    Google Scholar 

  • J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual EditionNumber2 Cold Spring Harbor Laboratory Press Plainview, New York

    Google Scholar 

  • P. Smirnoff S. Khalef S.W. BirkY.and Applebaum (1976) ArticleTitleA trypsin and chymotrypsin inhibitor from chick peas (Cicer arietinum) Biochem. J. 157 745–751

    Google Scholar 

  • T. Tarrago I. Martinez M. Torrent A. Codina E. Giralt P. Puigdomenech D. Ludevid (2003) ArticleTitleThe fuc1 gene product (20 kDa FUC1) of Pisum sativum has no l-fucosidase activity Plant. Mol. Biol. 51 877–884

    Google Scholar 

  • M. Telang A. Srinivasan A. Patankar A. Harsulkar V. Joshi A. Damle V. Deshpande M. Sainani P. Ranjekar G. Gupta A. Birah S. Rani M. Kachole A. Giri V. Gupta (2003) ArticleTitleBitter gourd proteinase inhibitors: potantial growth inhibitors of Helicoverpa armigera and Spodoptera litura Phytochemistry. 63 643–652

    Google Scholar 

  • M. Volpicella L.R. Ceci J. Cordewener T. America R. Gallerani W. Bode M.A. Jongsma J. Beekwilder (2003) ArticleTitleProperties of purified gut Trypsin from Helicoverpa zea adapted to proteinase inhibitors Eur. J. Biochem. 270 10–19

    Google Scholar 

  • J.A. Zavala A.G. Patankar K. Gase D. Hui I.T. Baldwin (2004) ArticleTitleManipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses Plant Physiol. 134 1181–1190

    Google Scholar 

  • V. Zupunski D. Kordis F. Gubensek (2003) ArticleTitleAdaptive evolution in the snake venom Kunitz/BPTI protein family FEBS Lett. 547 131–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, A., Giri, A.P., Harsulkar, A.M. et al. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae. Plant Mol Biol 57, 359–374 (2005). https://doi.org/10.1007/s11103-004-7925-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-7925-2

Keywords

Navigation