Skip to main content

Advertisement

Log in

Study of Arabidopsis thalianaresistome in response to cucumber mosaic virus infection using whole genome microarray

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The plant innate immune response is mediated by resistance (R) genes and involves hypersensitive response (HR) cell death. During resistance responses, the host undergoes net changes in the transcriptome. To understand these changes, we generated a whole genome transcript profile for RCY1-mediated resistance to cucumber mosaic virus strain Y (CMV-Y) in Arabidopsis. Using a very stringent selection criterion, we identified 444 putative factors belonging to nine different functional classes that show significant transcript regulation during Arabidopsis-CMV-Y interaction. Genes with unknown function formed the largest class. Other functional classes represented in the resistome include kinases and phosphatases, protein degradation machinery/proteases, transcriptional regulators, and others. Interestingly, several of the unknown function genes possess well characterized domains and secondly many genes encode small peptides with less than 100 amino acids. Analysis of 1.1 kb promoter regions of the 444 genes revealed that 9 out of the 12 known cis-binding elements are significantly associated with pathogen responsive cluster. Location and distribution of five prominent binding elements for select group of disease resistance related and unknown function genes is presented. The analysis also revealed 80 defense-responsive genes that might participate in Rgene-mediated defense against both viral and bacterial pathogens. In addition, chromosome distribution of genes that respond to bacterial and viral pathogens suggests that they are located in small gene clusters and may be transcriptionally co-regulated. Exploring the precise function of the new genes identified in this analysis will offer new insights into plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arur, S., Uche, U. E., Rezaul, K., Fong, M., Scranton, V., Cowan, A. E., Mohler, W. and Han, D. K. 2003. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4: 587–598.

    PubMed  Google Scholar 

  • Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. 2002. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295: 2073–2076.

    PubMed  Google Scholar 

  • Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781–791.

    PubMed  Google Scholar 

  • Boyd, J. M., Malstrom, S., Subramanian, T., Venkatesh, L. K., Schaeper, U., Elangovan, B., D'Sa-Eipper, C. and Chinnadurai, G. 1994. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79: 341–351.

    PubMed  Google Scholar 

  • Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J. A., Harper, J. F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J. L., Wang, X., Zhu, T. 2002. Expression pro le matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559–574.

    PubMed  Google Scholar 

  • Cooley, M. B., Pathirana, S., Wu, H.-J., Kachroo, P. and Klessig, D. F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663–676.

    PubMed  Google Scholar 

  • Czernic, P., Huang, H. C. and Marco, Y. 1996. Characterization of hsr201 and hsr515, two tobacco genes preferentially expressed during the hypersensitive reaction provoked by phytopathogenic bacteria. Plant Mol Biol 31: 255–265.

    PubMed  Google Scholar 

  • Dell 'Angelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M. and Bonifacino, J. S. 2000. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149: 81–94.

    PubMed  Google Scholar 

  • Deshaies, R. J. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435–467.

    PubMed  Google Scholar 

  • Dietrich, R. A., Richberg, M. H., Schmidt, R., Dean, C. and Dangl, J. L. 1997. A novel zinc nger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88: 685–694.

    PubMed  Google Scholar 

  • Falk, A., Feys, B. J., Frost, L. N., Jones, J. D. G., Daniels, M. J. and Parker, J. E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. 96: 3292–3297.

    PubMed  Google Scholar 

  • Golldack, D., Vera, P. and Dietz, K. J. 2003. Expression of subtilisin-like serine proteases in Arabidopsis thaliana is cell specific and responds to jasmonic acid and heavy metals with developmental differences. Plant Physiol. 118: 64–73.

    Google Scholar 

  • Hammond-Kosack, K. E. and Parker, J. E. 2003. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Op. Biotechnol. 14: 177–193.

    Google Scholar 

  • Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dangl, J. L. 2003. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22: 5679–5689.

    PubMed  Google Scholar 

  • Huckelhoven, R., Dechert, C. and Kogel, K. H. 2003. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. 100: 5555–5560.

    PubMed  Google Scholar 

  • Ji, L. H. and Ding, S. W. 2001. The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol. Plant Microbe Interact. 14: 715–724.

    PubMed  Google Scholar 

  • Jirage, D., Tootle, T. L., Reuber, L., Frost, L., Feys, B. J., Parker, J. E., Ausubel, F. M. and Galzebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. 96: 13583–13588.

    PubMed  Google Scholar 

  • Kerr, M. K., Martin, M. and Churchill, G. A. 2000. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7: 819–837.

    PubMed  Google Scholar 

  • Kruger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., Mulder, L. and Jones, J. D. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296: 744–747.

    PubMed  Google Scholar 

  • Lam, E., Kato, N. and Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848–853.

    PubMed  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. H2 O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    PubMed  Google Scholar 

  • Li, C., and Wong, W. H. 2001. Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. Natl. Acad. Sci. 98: 31–36.

    PubMed  Google Scholar 

  • Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. and DineshKumar, S. P. 2004. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279: 2101–2108.

    PubMed  Google Scholar 

  • Liu, Y., Schiff, M., Serino, G., Deng, X.-W. and DineshKumar, S. P. 2002. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14: 1483–1496.

    PubMed  Google Scholar 

  • Lohi, O., Poussu, A., Mao, Y., Quiocho, F. and Lehto, V. P. 2002. VHS domain-a longshoreman of vesicle lines. FEBS Lett. 513: 19–23.

    PubMed  Google Scholar 

  • Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L. and Baulcombe, D. C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22: 5690–5699.

    PubMed  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., Dangl, J. L. and Dietrich, R. A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403–410.

    PubMed  Google Scholar 

  • Martin, G. B., Bogdanove, A. J. and Sessa, G. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54: 23–61.

    PubMed  Google Scholar 

  • McDowell, J. M., Dhandaydham, M., Long, T. A., Aarts, M. G., Goff, S., Holub, E. B. and Dangl, J. L. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsi. Plant Cell 10: 1861–1874.

    PubMed  Google Scholar 

  • Peart, J. R., Lu, R., Sadanandom, A., Malcuit, I., Moffet, P., Brice, D. C., Schauser, L., D. A., J., Xiao, S., M. J., C., Dow, M., Jones, J. D., Shirasu, K. and Baulcombe, D. C. 2002. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. 99: 10865–10869.

    PubMed  Google Scholar 

  • Ponting, C. P., Phillips, C., Davies, K. E. and Blake, D. J. 1997. PDZ domains: targeting signaling molecules to sub-membranous sites. Bioessays 19: 469–479.

    PubMed  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809–1819.

    PubMed  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C. and Manners, J. M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. 97: 11655–11660.

    PubMed  Google Scholar 

  • Song, H. Y., Rothe, M. and Goeddel, D. V. 1996. The tumor necrosis factor-inducible zinc nger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc. Natl. Acad. Sci. 93: 6721–6725.

    PubMed  Google Scholar 

  • Storey, J. D. and Tibshirani, R. 2003. Statistical signi cance for genomewide studies. Proc. Natl. Acad. Sci. 100: 9440–9445.

    PubMed  Google Scholar 

  • Takahashi, H., Goto, N. and Ehara, Y. 1994. Hypersensitive response in cucumber mosaic-virus infected Arabidopsis thaliana. Plant J. 6: 369–378.

    Google Scholar 

  • Takahashi, H., Miller, J., Nozaki, Y., Sukamto., Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y. and DineshKumar, S. P. 2002. Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32: 655–667.

    PubMed  Google Scholar 

  • Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G. and Katagiri, F. 2003. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317–330.

    PubMed  Google Scholar 

  • Uren, A. G., O'Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V. and Dixit, V. M. 2000. Identi cation of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961–967.

    PubMed  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115.

    PubMed  Google Scholar 

  • Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33: 271–283.

    PubMed  Google Scholar 

  • Zhang, S. and Klessig, D. F. 2001. MAPK cascade in plant defense signaling. Trends Plant Sci. 6: 520–527.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marathe, R., Guan, Z., Anandalakshmi, R. et al. Study of Arabidopsis thalianaresistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 55, 501–520 (2004). https://doi.org/10.1007/s11103-004-0439-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0439-0

Navigation