Skip to main content
Log in

Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The ethylene, jasmonic acid and osmotic signaling pathways respond to environmental stimuli and in order to understand how plants adapt to biotic and abiotic stresses it is important to understand how these pathways interact each other. In this paper, we report a novel ERF protein – jasmonate and ethylene-responsive factor 3 (JERF3) – that unites these pathways. JERF3, which functions as an in vivo transcription activator in yeast, binds to the GCC box, an element responsive to ethylene/JA signaling, as well as to DRE, a dehydration-responsive element that responds to dehydration, high salt and low-temperature. Expression of JERF3 in tomato is mainly induced by ethylene, JA, cold, salt or ABA. Constitutive expression of JERF3 in transgenic tobacco significantly activated expression of pathogenesis-related genes that contained the GCC box, resulting in enhanced tolerance to salt. These results indicate that JERF3 functions as a linker in ethylene- and osmotic stress-signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrar, S., Ausubel, F.M. and Ecker, H.R. 2003. Five components of the ethylene-response pathway identified in a screen for week ethylene-insensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 2992–2997.

    Article  PubMed  Google Scholar 

  • Aono, M., Kubo, A., Saji, H., Tanaka, K. and Kondo, N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol. 34: 129–136.

    Google Scholar 

  • Berrocal-Lobo, M., Molina, A. and Solano, R. 2002. Constitutive expression of ethylene-response-factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29: 23–32.

    Article  PubMed  Google Scholar 

  • Boller, T., Gehri, A., Mauch, F. and Voegeli, U. 1983. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157: 22–31.

    Article  Google Scholar 

  • Brown, R.L., Kazan, K., McGrath, K.C., Maclean, D.J. and Manners, J.M. 2003. A role for the GCC-box in jasmonatemediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 132: 1020–1032.

    Article  PubMed  Google Scholar 

  • Chakravarthy, S., Tuori, R.P., D'Ascenzo, M.D., Fobert, P.R., Despres, C. and Martin, G.B. 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15: 3033–3050.

    Article  PubMed  Google Scholar 

  • Demekamp, M. and Smeekens, S.C. 2003. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132: 1415–1423.

    Article  PubMed  Google Scholar 

  • Dempsey, D.A., Shah, J. and Klessig, D.F. 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18: 547–575.

    Article  Google Scholar 

  • Dong, X. 1998. SA, JA, ethylene and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–322.

    Article  PubMed  Google Scholar 

  • Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 33: 751–763.

    Article  PubMed  Google Scholar 

  • Felix, G. and Meins, F. Jr. 1987. Ethylene regulation of b-1,3-glucanase in tobacco. Planta 172: 386–392.

    Article  Google Scholar 

  • Gu, Y., Yang, C., Thara, Y.K., Zhou, J. and Martin, G.B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12: 771–786.

    Article  PubMed  Google Scholar 

  • Gu, Y.Q., Wildermuth, M.C., Chakravarthy, S., Loh, Y.T., Yang, C., He, X., Han, Y. and Martin, G.B. 2002. Tomato transcription factors pti4, pti5, pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14: 817–831.

    Article  PubMed  Google Scholar 

  • Guo, H. and Ecker, J.R. 2003. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115: 667–677.

    Article  PubMed  Google Scholar 

  • Guo, H. and Ecker, J.R. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7: 40–49.

    Article  PubMed  Google Scholar 

  • Hao, D., Ohme-Takagi, M. and Sarai, A. 1998. Unique mode of GCC box recognition by the DNA-binding factor (ERF domain) in plant. J. Biol. Chem. 273: 26857–26861.

    Article  PubMed  Google Scholar 

  • Hao, D., Yamasaki, K., Saraai, A. and Ohme-Takagi, M. 2002. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41: 4202–4208.

    Article  PubMed  Google Scholar 

  • He, P., Warren, R.F., Zhao, T., Shan, L., Zhu, L., Tang, X. and Zhou, J.M. 2001. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol. Plant Microbe Interact. 14: 1453–1457.

    PubMed  Google Scholar 

  • Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271.

    Article  PubMed  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.

    Article  PubMed  Google Scholar 

  • Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. and Solano, R. 2003. ETHYLENE RESPONSE FACTOR 1 integratessignals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165–178.

    Article  PubMed  Google Scholar 

  • Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethyleneresponsive element. Plant Cell 7: 173–182.

    Article  PubMed  Google Scholar 

  • Ohme-Takagi, M., Suzuki, K. and Shinshi, H. 2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 41: 1187–1192.

    Article  PubMed  Google Scholar 

  • Ohta, M., Ohta-Takagi, M. and Shinshi, H. 2000. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J. 22: 29–38.

    Article  PubMed  Google Scholar 

  • Park, J.M., Park, C.J., Lee, S.B., Ham, B.K., Shin, R. and Paek, K.H. 2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13: 1035–1046.

    Article  PubMed  Google Scholar 

  • Pieterse, C.M.J. and van Loon, L.C. 1999. Salicylic acidindependent plant defence pathways. Curr. Rev. Plant Biol. 4: 52–58.

    Google Scholar 

  • Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C. and Genschik, P. 2000. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679–689.

    Article  Google Scholar 

  • Reymond, P. and Farmer, E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411.

    Article  PubMed  Google Scholar 

  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C.Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrin, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G.-L. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 29: 2105–2110.

    Article  Google Scholar 

  • Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998–1009.

    Article  PubMed  Google Scholar 

  • Singh, K.B., Foley, R.C. and Onate-Sanchez, L. 2002. Transcription factors in plant defense and stress responses. Cur. Opin. Plant Biol. 5: 430–436.

    Article  Google Scholar 

  • Skriver, K. and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.

    Article  PubMed  Google Scholar 

  • Solano, R., Stepanova, A., Chao, Q. and Ecker, J.R. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gen. Dev. 12: 3703–3714.

    Google Scholar 

  • Splel, S.H., Koornneef, A., Claessens, S.M., Korzelius, J.P., van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., van Loo, L.C., Dong, X. and Pieterse, C.M. 2003. NPR1 modulates cross-talk between salicylateand jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760–770.

    Article  PubMed  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035–1040.

    Article  PubMed  Google Scholar 

  • Tournier, B., Sanchez-Ballesta, M.T., Jones, B., Pesquet, E., Regad, F., Latche, A., Pech, J.C. and Bouzayen, M. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550: 149–154.

    Article  PubMed  Google Scholar 

  • Veena, Reddy, V.S. and Sopory, S.K. 1999. Glyoxylase I from Brassica juncea: molecular cloning, regulation and its overexpression confer tolerance in transgenic tobacco under stress. Plant J. 17: 385–395.

    Article  PubMed  Google Scholar 

  • Wu, K., Tian, L., Hollingworth, J., Brown, D.C. and Miki, B. 2002. Functional analysis of tomato pti4 in Arabidopsis. Plant physiol. 128: 30–37.

    Article  PubMed  Google Scholar 

  • Xiong L., Schumaker, K.S. and Zhu, J.K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165-S183.

    Article  PubMed  Google Scholar 

  • Yang, Y., Li, R. and Qi, M. 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22: 543–551.

    Article  PubMed  Google Scholar 

  • Zhou, J., Tang, X. and Martin, G.B. 1997. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 16: 3207–3218.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Huang, Z., Chen, Q. et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55, 183–192 (2004). https://doi.org/10.1007/s11103-004-0113-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0113-6

Navigation