Skip to main content

Advertisement

Log in

Anterior-posterior diameter is a key driver of resectability and complications for pituitary adenomas with suprasellar extension in endoscopic transsphenoidal surgery

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Background

As endoscopic transsphenoidal approaches are more routinely selected for progressively larger pituitary adenomas with parasellar extension, understanding potential anatomical factors that limit resection and contribute to complications is becoming increasingly important for tailoring a surgical approach. This study aimed to reevaluate existing predictive tools for resectability in pituitary adenomas specifically with suprasellar extension, and furthermore identify any additional measurable features that may be more useful in preoperative planning.

Methods

A single-center retrospective chart review of adult patients who underwent endoscopic transsphenoidal surgery for pituitary adenomas with suprasellar extension from 2015 to 2020 was performed. Preoperative MRIs were systematically assessed to assign a Knosp classification, a Zurich Pituitary Score (ZPS), and for dimensional measurements of the suprasellar aspect of the lesions. Univariate comparisons and multivariate regression models were employed to assess the influence of these factors on extent of resection and postoperative complications.

Results

Of the 96 patients with suprasellar pituitary adenomas who underwent endoscopic transsphenoidal surgery, 74 patients (77%) had a gross total resection (GTR). Neither Knosp grade nor ZPS score, even when dichotomized, demonstrated an association with GTR (Knosp 3A-4 versus Knosp 0–2, p = 0.069; ZPS III-IV versus ZPS I-II, p = 0.079). Multivariate regression analysis identified suprasellar anterior-posterior tumor diameter (SSAP) as the only significant predictor of extent of resection in this cohort (OR 0.951, 95% CI 0.905-1.000, p = 0.048*). A higher SSAP also had the strongest association with intraoperative CSF leaks (p = 0.0012*) and an increased overall rate of postoperative complications (p = 0.002*). Further analysis of the regression model for GTR suggested an optimal cut point value for SSAP of 23.7 mm, above which predictability for failing to achieve GTR carried a sensitivity of 89% and a specificity of 41%.

Conclusions

This study is unique in its examination of endoscopic transsphenoidal surgical outcomes for pituitary adenomas with suprasellar extension. Our findings suggest that previously established grading systems based on lateral extension into the cavernous sinus lose their predictive value in lesions with suprasellar extension and, more specifically, with increasing suprasellar anterior-posterior diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Castle-Kirszbaum M, Wang YY, King J, Goldschlager T (2022) Quality of Life after Endoscopic Surgical Management of Pituitary Adenomas. Neurosurgery 90(1):81–91

    Article  PubMed  Google Scholar 

  2. Castle-Kirszbaum M, Wang YY, King J, Goldschlager T (2022) Predictors of visual and endocrine outcomes after endoscopic transsphenoidal surgery for pituitary adenomas. Neurosurg Rev 45(1):843–853

    Article  PubMed  Google Scholar 

  3. Castle-Kirszbaum M, Wang YY, King J, Kam J, Goldschlager T (2023) The HACKD Score-Predicting extent of resection of Pituitary Macroadenomas through an endoscopic endonasal Transsphenoidal Approach. Oper Neurosurg (Hagerstown) 24(2):154–161

    Article  PubMed  Google Scholar 

  4. Younus I, Gerges MM, Uribe-Cardenas R, Morgenstern P, Kacker A, Tabaee A, Anand VK, Schwartz TH (2020) The slope of the learning curve in 600 consecutive endoscopic transsphenoidal pituitary surgeries. Acta Neurochir (Wien) 162(10):2361–2370

    Article  PubMed  Google Scholar 

  5. Little AS, Kelly DF, White WL, Gardner PA, Fernandez-Miranda JC, Chicoine MR, Barkhoudarian G, Chandler JP, Prevedello DM, Liebelt BD, Sfondouris J, Mayberg MR (2019) Results of a prospective multicenter controlled study comparing surgical outcomes of microscopic versus fully endoscopic transsphenoidal surgery for nonfunctioning pituitary adenomas: the Transsphenoidal extent of resection (TRANSSPHER) study. J Neurosurg 132(4):1043–1053

    Article  PubMed  Google Scholar 

  6. Knosp EK, Steiner ES, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4):610–617 ; discussion 617-8

    CAS  PubMed  Google Scholar 

  7. Micko AS, Wöhrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122(4):803–811

    Article  PubMed  Google Scholar 

  8. Mooney MA, Hardesty DA, Sheehy JP, Bird R, Chapple K, White WL, Little AS (2017) Interrater and intrarater reliability of the Knosp scale for pituitary adenoma grading. J Neurosurg 126(5):1714–1719

    Article  PubMed  Google Scholar 

  9. Serra C, Staartjes VE, Maldaner N, Muscas G, Akeret K, Holzmann D, Soyka MB, Schmid C, Regli L (2018) Predicting extent of resection in transsphenoidal surgery for pituitary adenoma. Acta Neurochir (Wien) 160(11):2255–2262

    Article  PubMed  Google Scholar 

  10. Staartjes VE, Serra C, Zoli M, Mazzatenta D, Pozzi F, Locatelli D, D’Avella E, Solari D, Cavallo LM, Regli L (2020) Multicenter external validation of the Zurich Pituitary score. Acta Neurochir (Wien) 162(6):1287–1295

    Article  PubMed  Google Scholar 

  11. Dehdashti AR, Ganna A, Witterick I, Gentili F (2009) Expanded endoscopic endonasal approach for anterior cranial base and suprasellar lesions: indications and limitations, Neurosurgery 64(4) 677 – 87; discussion 687-9.

  12. Peto I, Abou-Al-Shaar H, White TG, Abunimer AM, Kwan K, Zavadskiy G, Wagner K, Black K, Eisenberg M, Bruni M, Dehdashti AR (2020) Sources of residuals after endoscopic transsphenoidal surgery for large and giant pituitary adenomas. Acta Neurochir (Wien) 162(10):2341–2351

    Article  PubMed  Google Scholar 

  13. Koutourousiou M, Gardner PA, Fernandez-Miranda JC, Paluzzi A, Wang EW, Snyderman CH (2013) Endoscopic endonasal surgery for giant pituitary adenomas: advantages and limitations. J Neurosurg 118(3):621–631

    Article  PubMed  Google Scholar 

  14. Bouthillier A, van Loveren HR, Keller JT (1996) Segments of the internal carotid artery: a new classification, Neurosurgery 38(3) 425 – 32; discussion 432-3.

  15. Dehdashti AR, Ganna A, Karabatsou K, Gentili F (2008) Pure endoscopic endonasal approach for pituitary adenomas: early surgical results in 200 patients and comparison with previous microsurgical series. Neurosurgery 62(5):1006–1015 discussion 1015-7

    PubMed  Google Scholar 

  16. Hughes G (2015) Youden’s index and the weight of evidence. Methods Inf Med 54(2):198–199

    Article  CAS  PubMed  Google Scholar 

  17. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35

    Article  CAS  PubMed  Google Scholar 

  18. Hofstetter CP, Nanaszko MJ, Mubita LL, Tsiouris J, Anand VK, Schwartz TH (2012) Volumetric classification of pituitary macroadenomas predicts outcome and morbidity following endoscopic endonasal transsphenoidal surgery. Pituitary 15(3):450–463

    Article  PubMed  Google Scholar 

  19. Cappabianca P, Cavallo LM, Esposito F, De Divitiis O, Messina A, De Divitiis E (2008) Extended endoscopic endonasal approach to the midline skull base: the evolving role of transsphenoidal surgery. Adv Tech Stand Neurosurg 33:151–199

    Article  CAS  PubMed  Google Scholar 

  20. Couldwell WT, Weiss MH, Rabb C, Liu JK, Apfelbaum RI, Fukushima T (2004) Variations on the standard transsphenoidal approach to the sellar region, with emphasis on the extended approaches and parasellar approaches: surgical experience in 105 cases, Neurosurgery 55(3) 539 – 47; discussion 547 – 50.

  21. Little AS, Chicoine MR, Kelly DF, Sarris CE, Mooney MA, White WL, Gardner PA, Fernandez-Miranda JC, Barkhoudarian G, Chandler JP, Prevedello DM, Liebelt BD, Sfondouris J, Mayberg MR (2020) Evaluation of Surgical resection goal and its relationship to extent of resection and patient outcomes in a Multicenter prospective study of patients with surgically treated, nonfunctioning pituitary adenomas: a Case Series. Oper Neurosurg (Hagerstown) 18(1):26–33

    Article  PubMed  Google Scholar 

  22. DiRisio AC, Feng R, Shuman WH, Platt S, Price G, Dullea JT, Gilja S, D’Andrea MR, Delman BN, Bederson JB, Shrivastava RK (2023) The Knosp Criteria Revisited: 3-Dimensional volumetric analysis as a Predictive Tool for Extent of Resection in Complex endoscopic pituitary surgery. Neurosurgery 92(1):179–185

    Article  PubMed  Google Scholar 

  23. Connor SE, Wilson F, Hogarth K (2014) Magnetic resonance imaging criteria to predict complete excision of parasellar pituitary macroadenoma on postoperative imaging. J Neurol Surg B Skull Base 75(1):41–46

    CAS  PubMed  Google Scholar 

  24. Heffernan AT, Han JK, Campbell J, Reese J, Day WG, Edwards J, Singh RV, Zhu W, Lam KK (2022) Predictive value of pituitary tumor morphology on outcomes and complications in endoscopic transsphenoidal surgery. World J Otorhinolaryngol Head Neck Surg 8(4):321–329

    Article  PubMed  PubMed Central  Google Scholar 

  25. Silva D, Attia M, Kandasamy J, Alimi M, Anand VK, Schwartz TH (2014) Endoscopic endonasal transsphenoidal above and below approach to the retroinfundibular area and interpeduncular cistern–cadaveric study and case illustrations. World Neurosurg 81(2):374–384

    Article  PubMed  Google Scholar 

  26. Mooney MA, Hardesty DA, Sheehy JP, Bird CR, Chapple K, White WL, Little AS (2017) Rater reliability of the hardy classification for Pituitary Adenomas in the magnetic resonance imaging era. J Neurol Surg B Skull Base 78(5):413–418

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mooney MA, Sarris CE, Zhou JJ, Barkhoudarian G, Chicoine MR, Fernandez-Miranda JC, Gardner PA, Hardesty DA, Jahnke H, Kelly DF, Liebelt BD, Mayberg MR, Prevedello DM, Sfondouris J, Sheehy JP, Chandler JP, Yuen KCJ, White WL (2019) Little, proposal and validation of a simple grading scale (TRANSSPHER Grade) for Predicting Gross Total Resection of Nonfunctioning Pituitary Macroadenomas after transsphenoidal surgery. Oper Neurosurg (Hagerstown) 17(5):460–469

    Article  PubMed  Google Scholar 

  28. Wang M, Cai Y, Jiang Y, Peng Y (2021) Risk factors impacting intra- and postoperative cerebrospinal fluid rhinorrhea on the endoscopic treatment of pituitary adenomas: a retrospective study of 250 patients. Med (Baltim) 100(49):e27781

    Article  CAS  Google Scholar 

  29. Magro E, Graillon T, Lassave J, Castinetti F, Boissonneau S, Tabouret E, Fuentes S, Velly L, Gras R, Dufour H (2016) Complications related to the endoscopic endonasal Transsphenoidal Approach for Nonfunctioning Pituitary Macroadenomas in 300 consecutive patients. World Neurosurg 89:442–453

    Article  PubMed  Google Scholar 

  30. do Amaral LC, Reis BL, Ribeiro-Oliveira A Jr, da Silva Santos TM, Giannetti AV (2021) Comparative study of complications after primary and revision transsphenoidal endoscopic surgeries. Neurosurg Rev 44(3):1687–1702

    Article  PubMed  Google Scholar 

  31. Castle-Kirszbaum M, Fuller P, Wang YY, King J, Goldschlager T (2021) Diabetes insipidus after endoscopic transsphenoidal surgery: multicenter experience and development of the SALT score. Pituitary 24(6):867–877

    Article  PubMed  Google Scholar 

  32. Mattogno PP, Caccavella VM, Giordano M, D’Alessandris QG, Chiloiro S, Tariciotti L, Olivi A, Lauretti L (2022) Interpretable machine learning-based prediction of Intraoperative Cerebrospinal Fluid Leakage in Endoscopic Transsphenoidal Pituitary surgery: a pilot study. J Neurol Surg B Skull Base 83(5):485–495

    Article  PubMed  PubMed Central  Google Scholar 

  33. Slot EMH, Sabaoglu R, Voormolen EHJ, Hoving EW, van Doormaal TPC (2022) Cerebrospinal fluid leak after transsphenoidal surgery: a systematic review and Meta-analysis. J Neurol Surg B Skull Base 83(Suppl 2):e501–e513

    Article  PubMed  Google Scholar 

  34. Makarenko S, Alzahrani I, Karsy M, Deopujari C, Couldwell WT (2022) Outcomes and surgical nuances in management of giant pituitary adenomas: a review of 108 cases in the endoscopic era, J Neurosurg 1–12

  35. Palpan Flores A, Sáez Alegre M, Vivancos Sanchez C, Pérez AZ, Pérez-López C (2023) Volumetric resection and complications in nonfunctioning pituitary adenoma by fully endoscopic Transsphenoidal Approach along 15 years of single-center experience. J Neurol Surg B Skull Base 84(1):8–16

    Article  PubMed  Google Scholar 

  36. Salenave S, Gatta B, Pecheur S, San-Galli F, Visot A, Lasjaunias P, Roger P, Berge J, Young J, Tabarin A, Chanson P (2004) Pituitary magnetic resonance imaging findings do not influence surgical outcome in adrenocorticotropin-secreting microadenomas. J Clin Endocrinol Metab 89(7):3371–3376

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Zhang W, Li S, Fan Y, Feng M, Wang R (2021) Development and evaluation of Deep Learning-based Automated Segmentation of Pituitary Adenoma in Clinical Task. J Clin Endocrinol Metab 106(9):2535–2546

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Michael Schulder, Dr. Mark Chaskes, Dr. Margherita Bruni, and Dr. Griffin Baum for their support of the trainees who put together this article and for their overall guidance in the publication process.

Funding

This work received no funding, sponsorship, or other material supplementation.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript drafting and revision (DG, JP, TW, EQ, HS, AD); Clinical data collection and interpretation (TW, MR, HS, DG, ME, AD); Figure design (DG, JP, EQ, KY, JF); Manuscript editing and revision (JP, EQ, KY, JF, ME, AD); Literature review (DG, JP); Research team management and oversight (JF, ME, AD). All authors reviewed the final version of the manuscript for submission.

Corresponding author

Correspondence to Danielle Golub.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Institutional Review Board (IRB) approval for this single-center retrospective chart review study to review individual patient charts for data capture was obtained by the lead author under the guidelines set forth by the Northwell Health Human Research Protection Program. Given the retrospective nature of the research and supervised anonymization process for data collection under IRB guidelines, individual patient consent to participate and consent to publish were not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Golub, D., White, T.G. et al. Anterior-posterior diameter is a key driver of resectability and complications for pituitary adenomas with suprasellar extension in endoscopic transsphenoidal surgery. Pituitary 26, 629–641 (2023). https://doi.org/10.1007/s11102-023-01354-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01354-z

Keywords

Navigation