Skip to main content
Log in

Mass spectrometry: the indispensable tool for plant metabolomics of colourless chlorophyll catabolites

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Senescence and ripening of plant tissues engage the pheophorbide a oxygenase pathway, reducing the chlorophyll content to inactive chlorophyll catabolite products, termed phyllobilins. These products are open-macrocycle derivatives, but present different structural features related to species-dependent enzyme activity. This review encompasses a brief outline of the chlorophyll catabolism pathway, a detailed description of the structural motifs of known phyllobilins, giving details of how mass spectrometry provides hints for the characterization of phyllobilins. The structural approach for the identification of phyllobilins requires several spectroscopic methodologies to reach a complete structural identification, including UV–visible spectroscopy, circular dichroism, nuclear magnetic resonance and mass spectrometry. Among these techniques, mass spectrometry presents several advantages for showing the structural features of phyllobilins, through acquisition of accurate mass, elemental composition, and detection of product ions, which provide valuable structural information. The combination of mass spectra with data-managing and in silico prediction tools greatly enhances the comprehensive building of the phyllobilin structure, and the resolving of the intriguing puzzle of enzymatic and chemical reactions involved in chlorophyll catabolism. Indeed, some strategies based on structural constraints that phyllobilins present, with recent developments in software prediction tools are proposed to foster the unravelling of phyllobilin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PaO:

Pheophorbide a oxygenase

NCC:

Non-fluorescent chlorophyll catabolite

RCCR:

Red chlorophyll catabolite reductase

FCC:

Fluorescent chlorophyll catabolite

DFCC:

Dioxobilin-type fluorescent chlorophyll catabolite

DNCC:

Dioxobilin-type non-fluorescent chlorophyll catabolite

DESI:

Desorption electrospray ionization

References

  • Bale NJ, Llewellyn CA, Airs R (2010) Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of type II chlorophyll-a transformation products: diagnostic fragmentation patterns. Org Geochem 41:473–481

    Article  CAS  Google Scholar 

  • Banala S, Moser S, Müller T et al (2010) Hypermodified chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed 49:5174–5177

    Article  CAS  Google Scholar 

  • Berghold J, Breuker K, Oberhuber M et al (2002) Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 74:109–119

    Article  CAS  PubMed  Google Scholar 

  • Berghold J, Eichmüller C, Hörtensteiner S et al (2004) Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers 1:657–668

    Article  CAS  PubMed  Google Scholar 

  • Berghold J, Müller T, Ulrich M et al (2006) Chlorophyll breakdown in maize: on the structure of two nonfluorescent chlorophyll catabolites. Monatsh Chem 37:751–753

    Article  Google Scholar 

  • Canjura FL, Schwartz SJ (1991) Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatography. J Agric Food Chem 39:1102–1105

    Article  CAS  Google Scholar 

  • Chen K, Ríos JJ, Pérez-Gálvez A et al (2015a) Development of an accurate and high-throughput methodology for structural comprehension of chlorophyll derivatives. (I) Phytylated derivatives. J Chromatogr A 1406:99–108

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Ríos JJ, Roca M et al (2015b) Development of an accurate and high-throughput methodology for structural comprehension of chlorophyll derivatives. (II) Dephytylated derivatives. J Chromatogr A 1412:90–99

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Schelbert S, Aubry S et al (2012) MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis. Plant Physiol 158:628–641

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Süssenbacher I, Moser S et al (2013) Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell 25:1868–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Hauenstein M, Hörtensteiner S (2016) A liquid chromatography-mass spectrometry platform for the analysis of phyllobilins, the major degradation products of chlorophyll in Arabidopsis thaliana. Plant J 88:505–518

    Article  CAS  PubMed  Google Scholar 

  • Curty C, Engel N (1996) Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum. Phytochem 42:1531–1536

    Article  CAS  Google Scholar 

  • Curty C, Engel N, Gossauer A (1995) Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. FEBS Lett 364:41–44

    Article  CAS  PubMed  Google Scholar 

  • Djapic N, Pavlovic M (2008) Chlorophyll catabolite from Parrotia Persica autumnal leaves. Rev Chim 59:878–882

    CAS  Google Scholar 

  • Djapic N, Pavlovic M (2009) Chlorophyll biodegradation products from Hamamelis Virginiana autumnal leaves. IJQR 3:1–8

    Google Scholar 

  • Erhart T, Mittelberger C, Vergeiner C et al (2016) Chlorophyll catabolites in senescent leaves of the plum tree (Prunus domestica). Chem Biodiversity 13:1441–1453

    Article  CAS  Google Scholar 

  • Hauenstein M, Christ B, Das A et al (2016) A role for TIC55 as hydrolase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell 28:2510–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinder B, Schellenberg M, Rodoni S et al (1996) How plants dispose of chlorophyll catabolites: directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles. J Biol Chem 271:27233–27236

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2004) The loss of green color during chlorophyll degradation—a prerequisite to prevent cell death? Planta 219:191–194

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Vicentini F, Matile P (1995) Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: enzymatic cleavage of phaeophorbide a in vitro. New Phytol 129:237–246

    Article  Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P et al (1998) The key step in chlorophyll breakdown in higher plants: cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273:15335–15339

    Article  PubMed  Google Scholar 

  • Jackson AH, Kenner GW, Budzikiewicz H et al (1967) Pyrroles and related compounds—X: mass spectrometry in structural and stereochemical problems—XC Mass spectra of linear di = , tri- and tetrapyrrolic compounds. Tetrahedron 23:603–632

    Article  CAS  Google Scholar 

  • Kräutler B (2014) Phyllobilins—the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 43:6227–6238

    Article  PubMed  Google Scholar 

  • Kräutler B, Hörtensteiner S (2014) Chlorophyll breakdown: chemistry, biochemistry and biology. In: Ferreira GC, Kadish KM, Smith K, Guilard R (eds) Handbook of porphyrin science—chlorophyll, photosynthesis and bio-inspired energy, vol 719. World Scientific Publishing, Singapore, pp 117–185

    Google Scholar 

  • Kräutler B, Jaun B, Bortlik K et al (1991) On the enigma of chlorophyll degradation: the constitution of a secoporphinoid catabolite. Angew Chem Int Ed 10:1315–1318

    Article  Google Scholar 

  • Kräutler B, Banala S, Moser S et al (2010) A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakwon. FEBS Lett 584:4215–4221

    Article  PubMed  Google Scholar 

  • Losey FG, Engel N (2001) Isolation and characterization of a urobilinogenoidic chlorophyll catatolite from Hordeum vulgare L. J Biol Chem 276:8643–8647

    Article  CAS  PubMed  Google Scholar 

  • Matile P, Schellenberg M, Peisker C (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187:230–235

    Article  CAS  PubMed  Google Scholar 

  • Moser S, Ulrich T, Müller T et al (2008) A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 7:1577–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser S, Müller T, Holzinger A et al (2009) Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. Proc Natl Acad Sci USA 106:15538–15543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser S, Müller T, Holzinger A et al (2012) Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit. Chem Eur J 18:10873–10885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlecker W, Kräutler B (1996) Breakdown of chlorophyll: constitution of nonfluorescing chlorophyll-catabolites from senescent cotyledons of the dicot rape. Plant Physiol Biochem 34:61–75

    Google Scholar 

  • Mühlecker W, Kräutler B, Ginsburg S et al (1993) Breakdown of chlorophyll: a tetrapyrrolic chlorophyll catabolite from senescent rape leaves. Helv Chim Acta 76:2976–2980

    Article  Google Scholar 

  • Müller T, Moser S, Ongania KH et al (2006) A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. Chem Biochem 7:40–42

    Google Scholar 

  • Müller T, Ulrich M, Ongania KH et al (2007) Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed 46:8699–8702

    Article  Google Scholar 

  • Müller T, Oradu S, Ifa DR et al (2011a) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83:5754–5761

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller T, Rafelsberger M, Vergeiner C et al (2011b) A dioxobilane as product of a divergent path of chlorophyll breakdown in Norway maple. Angew Chem Int Ed 50:10724–10727

    Article  Google Scholar 

  • Müller T, Vergeiner S, Kräutler B (2014) Structure elucidation of chlorophyll catabolites (phyllobilins) by ESI-mass spectrometry-pseudo molecular ions and fragmentation analysis of a nonfluorescent chlorophyll catabolite (NCC). Int J Mass Spectrom 365–366:48–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberhuber M, Berghold J, Mühlecker W et al (2001) Chlorophyll breakdown—on a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84:2615–2627

    Article  CAS  Google Scholar 

  • Oberhuber M, Berghold J, Breuker K et al (2003) Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci USA 100:6910–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Gálvez A, Roca M (2017) Phyllobilins: a new group of bioactive compounds. In: Rahman A (ed) Studies in natural products chemistry, vol 52. Elsevier Science BV, Amsterdam, pp 159–191

    Google Scholar 

  • Pružinska A, Tanner G, Aubry S et al (2005) Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139:52–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Pružinska A, Anders I, Aubry S et al (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Ríos JJ, Pérez-Gálvez A, Roca M (2014a) Non-fluorescent chlorophyll catabolites in quince fruits. Food Res Int 65:255–262

    Article  Google Scholar 

  • Ríos JJ, Roca M, Pérez-Gálvez A (2014b) Non-fluorescent chlorophyll catabolites in loquat fruits (Eriobotrya japonica Lindl.). J Agric Food Chem 62:10576–10584

    Article  PubMed  Google Scholar 

  • Ríos JJ, Roca M, Pérez-Gálvez A (2015) Systematic HPLC/ESI-high resolution-qTOF-MS methodology for metabolomics studies in nonfluorescent chlorophyll catabolites pathway. J Anal Methods Chem 2015:1–10

    Article  Google Scholar 

  • Roca M, Ríos JJ, Chahuaris A, Pérez-Gálvez A (2017) Non-fluorescent and yellow chlorophyl catabolites in Japanese plum fruits (Prunus salicina, Lindl.). Food Res Int 100:332–338

    Article  CAS  PubMed  Google Scholar 

  • Roiser MH, Müller T, Kräutler B (2015) Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica). J Agric Food Chem 63:1385–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherl M, Müller T, Kräutler B (2012) Chlorophyll catabolites in senescent leaves of the lime tree (Tilia cordata). Chem Biodivers 9:2605–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherl M, Müller T, Kreutz CR et al (2016) Chlorophyll catabolites in fall leaves of the wych elm tree present a novel glycosylation motif. Chem Eur J 22:9498–9503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Süssenbacher I, Christ B, Hörtensteiner S et al (2014) Hydroxymethylated phyllobilins: a puzzling new feature of the dioxobilin branch of chlorophyll breakdown. Chem Eur J 20:87–92

    Article  PubMed  Google Scholar 

  • Süssenbacher I, Hörtensteiner S, Kräutler B (2015a) A dioxobilin-type fluorescent chlorophyll catabolite as a transient early intermediate of the dioxobilin-branch of chlorophyll breakdown in Arabidopsis thaliana. Angew Chem Int Ed 54:1–6

    Article  Google Scholar 

  • Süssenbacher S, Kreutz CR, Christ B et al (2015b) Hydroxymethylated dioxobilins in senescent Arabidopsis thaliana leaves: sign of a puzzling biosynthetic intermezzo of chlorophyll breakdown. Chem Eur J 21:11664–11670

    Article  PubMed  Google Scholar 

  • Vergeiner C, Banala S, Kräutler B (2013) Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles. Chem Eur J 19:12294–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT-EU, Spanish and European Government, AGL 2015-63890-R). All the authors contributed equally to the performance and writing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pérez-Gálvez.

Appendix

Appendix

Figures corresponding to the tandem mass spectra of some representative phyllobilins (see Figs. 5, 6 and 7).

Fig. 5
figure 5

MS2 of [M + H]+ at m/z = 807.3447 Da (Zm-NCC2 and its structural equivalents in Table 1). Some of the structural features arise from the characteristic fragmentations described in Table 2: 32 Da, methylation at O84 (at m/z = 775 Da [M + H-MeOH]+); 123 Da, ring D presents the 181,182-vinyl arrangement (at m/z = 683 Da [M + H-ring D]+); 155 Da, ring A is hydroxylated at C32; 285 Da, presence of ring D-β-glucopyranoyl

Fig. 6
figure 6

MS2 of [M + H]+ at m/z = 731.29237 Da (Ej-NCC2 in Table 1). Some of the structural features arise from the characteristic fragmentations described in Table 2: 88 Da, The structure presents a malonyl group and it is hydroxylated at C32 (at m/z = 643 Da [M + H-malonyl]+); 209 Da, ring D presents the 181,182-vinyl arrangement and it is hydroxylated at C32 (at m/z = 522 Da [M + H-ring D-malonyl]+)

Fig. 7
figure 7

MS2 of [M + H]+ at m/z = 667.2974 Da (UCC and its structural equivalents in Table 1). Some of the structural features arise from the characteristic fragmentations described in Table 2: 18 Da, presence of hydroxyl group (at m/z = 649 Da [M + H-H2O]+); 32 Da, structure is methylated at O84 (at m/z = 649 Da [M + H-MeOH]+); 157 Da, ring D presents the 181,182-dihydroxyethyl arrangement (at m/z = 510 Da [M + H-ring D]+)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roca, M., Ríos, J.J. & Pérez-Gálvez, A. Mass spectrometry: the indispensable tool for plant metabolomics of colourless chlorophyll catabolites. Phytochem Rev 17, 453–468 (2018). https://doi.org/10.1007/s11101-017-9543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9543-z

Keywords

Navigation