Skip to main content

Advertisement

Log in

Phytochemicals and biological activities of Artemisia sieversiana

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review discusses a whole plant’s chemical nature and biological effects of Artemisia sieversiana Ehrhart ex willd (ASS). Several types of chemical compositions have been isolated from A. sieversiana, including 26 terpenoids (21 guaiane-type sesquiterpenes, 3 germacrane-type sesquiterpenes, 1 muurolane-type sesquiterpene, and 1 diterpenoid), 16 sesamin-type lignans, 9 flavonoids, 3 steroids, and 3 alkaloids. Some of them have shown promising bioactivities, such as anti-tumour, anti-inflammatory, antioxidant functions and so on. Herein, we have summarized the phytochemical and pharmacological progress of ASS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bohlmann F, Ang W, Trinks C, Jakupovic J, Huneck S (1985) Dimeric guaianolides from Artemisia sieversiana. Phytochemistry 24:1009–1015

    Article  CAS  Google Scholar 

  • Boman B (1988) L-tryptophan: a rational anti-depressant and a natural hypnotic? Australian and New Zealand. J Psychiatry 22:83–97

    CAS  Google Scholar 

  • Cavalcante JMS, Nogueira TBS, Tomaz ACA, Silva DA, Souza MFAMFV (2010) Steroidal and phenolic compounds from Sidastrum paniculatum (L.) Fryxell and evaluation of cytotoxic and anti-inflammatory activities. Quim Nova 33:846–849

    Article  CAS  Google Scholar 

  • Chemesova II, Belenovskaya LM, Markova LP (1982) Phenolic compounds of Artemisia sieversiana. Chem Nat Compd 18(4):492–493

    Article  Google Scholar 

  • Chen JJ, Chang YL, Teng CM, Chen IS (2000a) Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med 66:251–256

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yang L, Lee TJ (2000b) Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol 59:1445–1457

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Miao Q, Geng M, Liu J, Hu Y, Tian L, Pan J, Yang Y (2013) Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M Cell cycle arrest and promoting apoptosis. Sci World J 269165:1–8

    Google Scholar 

  • Choi DY, Lee JY, Kim MR, Woo ER, Kim YG, Kang KW (2005) Chrysoeriol potently inhibits the induction of nitric oxide synthase by blocking AP-1 activation. J Biomed Sci 12:949–959

    Article  CAS  PubMed  Google Scholar 

  • Choi I, Park Y, Choi H, Lee EH (2006) Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. BioFactors 26:273–281

    Article  CAS  PubMed  Google Scholar 

  • Eglseer KZ, Jurenitsch J, Korhammer S, Haslinger E, Sosa S, Loggia RD, Kubelka W, Franz C (1991) Sesquiterpene lactones of achillea setacea with antiphlogistic activity. Planta Med 57:444–446

    Article  Google Scholar 

  • Gabay O, Sanchez C, Salvat C, Chevy F, Breton M, Nourissat G, Wolf C, Jacques C, Berenbaum F (2010) Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthr Cartil 18:106–116

    Article  CAS  PubMed  Google Scholar 

  • Greger H (1979) Polyacetylenes and sesamines as chemical characters in the Artemisia absinthium group. J Med Plant Res 35:84–91

    Article  CAS  Google Scholar 

  • Greger H (1981) Sesamin-type lignans as chemical markers within Artemisia. Biochem Syst Ecol 9:165–169

    Article  CAS  Google Scholar 

  • Guo NL, Xu YH, Cao ZQ (2015) Absinthin attenuates LPS-induced ALI through MIP-1α-mediated inflammatory cell infiltration. Exp Lung Res 41:514–524

    Article  CAS  PubMed  Google Scholar 

  • Ho C, Choi EJ, Yoo GS, Kim KM, Ryu SY (1998) Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med 64:577–578

    Article  CAS  PubMed  Google Scholar 

  • Jiangsu College of New Medicine (1977) A comprehensive dictionary of traditional Chinese medicine. Shanghai Scientific and Technical Publishers, Shanghai, pp 627–629

    Google Scholar 

  • Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X (2010) Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem 122:610–617

    Article  CAS  Google Scholar 

  • Kiprono PC, Kaberia F, Keriko JM, Karanja JN (2000) The in vitro anti-fungal and anti-bacterial activities of β-Sitosterol from Senecio lyratus (Asteraceae). Z Naturforsch 55:485–488

    CAS  Google Scholar 

  • Kiso Y (2004) Antioxidative roles of sesamin, a functional lignan in sesame seed, and it’s effect on lipid-and alcohol-metabolism in the liver: A DNA microarray study. BioFactors 21:191–196

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Mishra GP, Naik PK, Murkute AA, Srivastava RB (2011) Genomic DNA isolation from Artemisia species grown in cold desert high altitude of India. Afr J Biotechnol 10:7303–7307

    CAS  Google Scholar 

  • Laskin DL, Pendino KJ (1995) Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35:655–677

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee JY, Park JH, Jung HS, Kim JS, Kang SS, Kim YS, Han Y (2007) Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25:3834–3840

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Cha BY, Choi SS, HaradaY Choi BK, Yonezawa T, Teruya T, Nagai K, Woo JT (2012) Farges in improves lipid and glucosemetabolism in 3T3-L1 adipocytes and high-fat diet-induced obese mice. BioFactors 38:300–308

    Article  CAS  PubMed  Google Scholar 

  • León EJD, Olmedo DA, Solís PN, Gupta MP, Terencio MC (2002) Diayangambin exerts immunosuppressive and anti-Inflammatory effects in vitro and in vivo. Planta Med 68:1128–1131

    Article  PubMed  Google Scholar 

  • Lin YR (1991) Flora Reipublicae Popularis Sinicae, vol 76. Science Press, Beijing, pp 1–10

    Google Scholar 

  • Liu SJ, Liao ZX, Liu C, Ji LJ, Sun HF (2014) Two new sesquiterpenes from Artemisia sieversiana. Fitoterapia 97:43–49

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Zhao M, Yang B, Shen G, Rao G (2009) Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem 114:499–504

    Article  CAS  Google Scholar 

  • Ma CM, Nakamura N, Hattori M, Zhu S, Komatsu K (2000) Guaiane dimers and germacranolide from Artemisia caruifolia. J Nat Prod 63:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Machado DG, Bettio LEB, Cunha MP, Santos ARS, Pizzolatti MG, Brighente IMC, Rodrigues ALS (2008) Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: Evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 587:163–168

    Article  CAS  PubMed  Google Scholar 

  • Marques RCP, Batistuzzo de Medeiros S, Dias CS, Barbosa-Filho JM, Agnez-Lima LF (2003) Evaluation of the mutagenic potential of yangambin and of the hydroalcoholic extract of Ocotea duckei by the Ames test. Mutat Res 536:117–120

    Article  CAS  PubMed  Google Scholar 

  • Matsuta T, Sakagami H, Satoh K, Kanamoto T, Terakubo S, Nakashima H, Kitajima M, Oizumi H, Oizumi HT (2011) Biological activity of luteolin glycosides and tricin from Sasa senanensis Rehder. In vivo 25:757–762

    CAS  PubMed  Google Scholar 

  • Miyawaki T, Aono H, Toyoda-Ono Y, Maeda H, Kiso Y, Moriyama K (2009) Antihypertensive effects of sesamin in humans. J Nutr Sci Vitaminol 55:87–91

    Article  CAS  PubMed  Google Scholar 

  • Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670

    Article  CAS  PubMed  Google Scholar 

  • Nazarenko MV, Leonteva LI (1966) A new sesquiterpene γ-lactone, sieversinin. Khimiya Prirodnykh Soedinenni 2:399–405

    CAS  Google Scholar 

  • Nguyen TY, To DC, Tran MH, Lee JS, Lee JH, Kim JA, Woo MH, Min BS (2015) Anti-inflammatory flavonoids isolated from Passiflora foetida. Nat Prod Commun 10:929–931

    PubMed  Google Scholar 

  • Niture NT, Ansari AA, Naik SR (2014) Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52:720–727

    PubMed  Google Scholar 

  • Olszanecki R, Gebska A, Kozlovski VI, Gryglewski RJ (2002) Flavonoids and nitric oxide synthase. J Physiol Pharmacol 53:571–584

    CAS  PubMed  Google Scholar 

  • Park SJ, Kim DH, Jung JM, Cai M, Liu X, Hong JG, Lee CH, Lee KR, Ryu JH (2012) The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 676:64–70

    Article  CAS  PubMed  Google Scholar 

  • Phitak T, Pothacharoen P, Settakorn J, Poompimol W, Caterson B, Kongtawelert P (2012) Chondroprotective and anti-inflammatory effects of sesamin. Phytochemistry 80:77–88

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Aceituno L, Ramos L, Martinez-Castro I, Sanz ML (2012) Low molecular weight carbohydrates in pine nuts from Pinus pinea L. J Agric Food Chem 60:4957–4959

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Watanabe K, Koketsu M, Akuzawa K, Yamada R, Li Z, Sadanari H, Matsubara K, Murayama T (2008) Anti-human cytomegalovirus activity of constituents from Sasa albo-marginata (Kumazasa in Japan). Antivir Chem Chemother 19:125–132

    Article  CAS  PubMed  Google Scholar 

  • Selloum L, Bouriche H, Tigrine C, Boudoukha C (2003) Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Exp Toxic Pathol 54:313–318

    Article  CAS  Google Scholar 

  • Serra MF, Diaz BL, Barreto EO, Pereira APB, Lima MCR, Barbosa-Filho JMB, Cordeiro RSB, Martins MA, Silva PMRD (1997) Anti-allergic properties of the natural PAF antagonist yangambin. Planta Med 63:207–212

    Article  CAS  PubMed  Google Scholar 

  • Southan GJ, Szabo C (1996) Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol 51:383–394

    Article  CAS  PubMed  Google Scholar 

  • Suleimenov EM, Smagulova FM, Seidakhmetova RB, Aksartov RM, Raldugin VA, Adekenov SM (2007) 4-Epiashantin from Artemisia sieversiana. Chem Nat Compd 43:232–233

    Article  CAS  Google Scholar 

  • Tan RX, Tang HQ, Hu J, Shuai B (1998) Lignans and sesquiterpene lactones from Artemisia sieversiana and Inula racemosa. Phytochemistry 49:157–161

    Article  CAS  PubMed  Google Scholar 

  • Tang HQ, Hu J, Li Y, Tan RX (2000) Terpenoids and flavonoids from Artemisia species. Planta Med 66:391–393

    Article  CAS  PubMed  Google Scholar 

  • Tibiriçá E (2001) Cardiovascular properties of yangambin, a lignan isolated from Brazilian plants. Cardiovasc Drug Rev 19:313–328

    Article  PubMed  Google Scholar 

  • Ubaev K, Kasymov SZ, Mukhametzhanov MN (1982) Components of Artemisia sieversiana. Chem Nat Compd 18(5):624

    Article  Google Scholar 

  • Villaseñor IM, Sanchez AC (2009) Menthalactone, a new analgesic from Mentha cordifolia opiz. leaves. J Biosci 64:809–812

    Google Scholar 

  • Yan XH, Lyu TJ, Jia N, Yu YH, Hua K, Feng WW (2013) Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3β/β-catenin pathway. PLoS One 8(5):e63731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YC (1991) Tibetan Chi. QingHai People’s Press, Xining, pp 33–34

    Google Scholar 

  • Yazawa K, Kurokawa M, Obuchi M, Li Y, Yamada R, Sadanari H, Matsubara K, Watanabe K, Koketsu M, Tuchida Y, Murayama T (2011) Anti-influenza virus activity of tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone. Antivir Chem Chemother 22:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yue GF, Wei J, Qian XP, Yu LX, Zou ZY, Guan WX, Wang H, Shen J, Liu BR (2013) Synergistic anticancer effects of polyphyllin and evodiamine on freshly-removed human gastric tumors. PLoS One 8(6):e65164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Guo GN, Miao RD, Chen NY, Wang Q (2004) Studies on the chemical constituents of Artemisia sieversiana and their anticancer activities (Nat Sci). J Lanzhou Univ 40:68–71

    CAS  Google Scholar 

  • Zhao Y, Li F, Yang J, An X, Zhou M (2005) Effect of phillyrin on the anti-obesity in nutritive obesity mice. J Chin Med Mater 28:123–124

    Google Scholar 

  • Zhou XD, Chai X, Zeng KW, Zhao MB, Jiang Y, Tu PF (2015) Artesin A, a new cage-shaped dimeric guaianolide from Artemisia sieversiana. Tetrahedron Lett 56:1141–1143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shaanxi Province Science and Technology to Co-ordinate Innovation Project Plan (2015KTCL03-14), National Natural Science Foundation of China (81373978), Shaanxi Key Technology Innovation Team (2012KCT-20), Local Service Special Projects of Shaanxi Provincial Department of Education (15JF001), and Traditional Chinese Medicine Industry Process of College Students Innovation Practice Base Project [Shaanxi Education Finance (2013) 171].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Jun Liu or Zhi-Shu Tang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SJ., Liao, ZX., Tang, ZS. et al. Phytochemicals and biological activities of Artemisia sieversiana . Phytochem Rev 16, 441–460 (2017). https://doi.org/10.1007/s11101-016-9475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-016-9475-z

Keywords

Navigation