Skip to main content

Advertisement

Log in

The genus Lindera: a source of structurally diverse molecules having pharmacological significance

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Lindera plants not only have good ornamental and economic uses but also have great medicinal and therapeutic values. The genus Lindera consists of approximately 100 species that are widely distributed in tropical and subtropical areas throughout the world. This extensive geographical distribution allows Lindera plants to produce diverse secondary metabolites having novel structures. Phytochemical investigations have shown that Lindera plants produce 341 constituents, including sesquiterpenoids, alkaloids, butanolides, lucidones, flavonoids, and phenylpropanoids. Moreover, some Lindera plants show significant chemotaxonomic reference under family Lauraceae and tribe Litseae. Although Lindera plants have various pharmacological and biological properties, their anticancer, antihypertensive, anti-inflammatory, and analgesic properties have been focused in many studies. Butanolides and lucidones have shown great potential in developing anticancer agents while aporphine alkaloids have shown great potential in developing antiarthritic and antinociceptive agents. However, these compounds need to be assessed further by performing in-depth and systematic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A549:

Human lung tumor cell line

AI:

Atherogenic index

Akt:

Protein kinase B

ALT:

Alanine aminotransferase

AMPK:

AMP-activated protein kinase

AP-1:

Activator protein 1

AR:

Aldose reductase

ARE:

Antioxidant response elements

AST:

Aspartate aminotransferase

ATP:

Adenosine triphosphate

B16 and B16-F10:

Mouse melanoma cell lines

BSO:

Buthionine sulfoximine

BV-2:

Immortalized murine microglial cell line

CCl4 :

Carbon tetrachloride

CC50 :

50 % Cytotoxic concentration

CIA:

Collagen II-induced arthritis

COX-2:

Cyclooxygenase-2

2:

5-DHBA, 2,5-dihydroxybenzoic acid

DPPH:

Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium

DU145:

Human prostate cancer cell line

EC50 :

Concentration for 50 % of maximal effect

ED50 :

Median effective dose

ES2:

Human mammary cancer cell line

GI50 :

Concentration that inhibits cancer cell growth by 50 %

GLUT-4:

Glucose transporter type 4

GSK-3:

Glycogen synthase kinase 3

H460:

Human lung cancer cell line

H9c2:

Cardiomyocyte cell line

hACAT-1:

Human acyl-coenzyme Acholesterol acyltransferase-1

HCT15:

Human colon carcinoma cell line

HCV:

Hepatitis C virus

HE:

Hematoxylin-eosin

HeLa:

Human cervical carcinoma cell line

HepG2:

Hepatocyte carcinoma cell line

HERG :

Human ether-a-go-go-related gene

HL-60:

Human leukemia cell line

HO-1:

Heme oxygenase-1

hPDL:

Human periodontal ligament

HT1080:

Human acetabulum fibrosarcoma cell line

HT22:

Hippocampal neuronal cell line

HT29:

Human colon adenocarcinoma cell line

HuH-7:

Human hepatoma cell line

HUVEC:

Human umbilical vein endothelial cell

IC50 :

Half maximal inhibitory concentration

IgG anti-CII:

IgG antibodies to native human type II collagen

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

IZ:

Inhibition zone

JNK:

c-Jun N-terminal kinase

K562:

Human erythroleukemia cell line

KATP channels:

ATP-sensitive potassium channels

KB16:

Human nasopharyngeal carcinoma cell line

L1210:

Mouse lymphocytic leukemia cell line

LDH:

Lactate dehydrogenase

LDLG:

Low-density lipoprotein cholesterol (LDL-C)/low density lipoprotein in granule

LNCap:

Androgen-sensitive human prostate adenocarcinoma cell

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCF-7:

Human breast cancer cell line

MDA:

Malondialdehyde

MDA-MB-231:

Breast tumor cell line

MIC:

Minimum inhibitory concentration

MS-G2:

Human hepatoma cell line

NF-κB:

Nuclear factor κB

Nrf-2:

Nuclear factor-E2-related factor 2

P-388:

Mouse lymphocytic leukemia cell line

PAF:

Platelet-activating factor

PC-3:

Human prostate cancer cell line

PEP:

Prolyl endopeptidase

PI3 kinase:

Phosphatidylinositol 3-kinase

PMACI:

Phorbol-12-myristate 13-acetate plus calcium ionophore

RAW264.7:

Mouse monocyte/macrophage cell line

SBC-3:

Human small cell lung cancer cell

SK-Hep1:

Human liver sinusoidal endothelial cell line

SK-MEL-2:

Human melanoma cell line

SK-OV-3:

Ovarian carcinoma cell line

SOD:

Superoxide dismutase

3T3-L1:

Mouse fibroblast cell

t-BHP:

Tert-butyl hydroperoxide

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

U46619:

Thromboxane A2 agonist

XF-498:

Glioma cell line

References

  • Agrawal N, Choudhary AS, Sharma MC, Dobhal MP (2011) Chemical constituents of plants from the genus Litsea. Chem Biodivers 8:223–243

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Ma WW, Smith DL, Chang CJ, Mclaughlin JL (1992) Biologically active γ-lactones and methylketoalkenes from Lindera benzoin. J Nat Prod 55(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Beckett AH, Casy AF (1954) Synthetic analgesics: stereochemical considerations. J Pharm Pharmacol 6:986–1001

    Article  CAS  PubMed  Google Scholar 

  • Bose G, Langer P (2005) Formal synthesis of linderone and lucidone based on one-pot cyclizations of 1,3-bis-silyl enol ethers with oxalyl chloride. Synlett 6:1021

    Google Scholar 

  • Cai JZ, Lin CL, Zhou ZY, Lin GY (2011) The chemical constituents study of the volatile oils from Lindera reflexa Hemsl roots, stems and leaves. Chin Arch Tradit Chin Med 29(8):1893–1895

    CAS  Google Scholar 

  • Cao CM, Peng Y, Shi QW, Xiao PG (2008) Chemical constituents and bioactivities of plants of Chloranthaceae. Chem Biodiver 5(2):219–238

    Article  CAS  Google Scholar 

  • Cao NF, Wu XH, Kang WY (2010) α-Glucosidase inhibitory activity in vitro and vivo of Lindera glauca (Sieb et Zucc) Blume. Fine Chem 27(6):546–548

    Google Scholar 

  • Cao N, Guo WJ, Tang JY, Fan JJ, He GQ, Shen Y, Xu Q (2011) Effects of the total flavonoids from Folium Linderae on lipid metabolism in mice with hyperlipidemia fatty liver. Tradit Chin Drug Res Pharmacol 22(2):149–153

    CAS  Google Scholar 

  • Chang YC, Chang FR, Wu YC (2000) The constituents of Lindera glauca. J Chin Chem Soc 47:373–380

    Article  CAS  Google Scholar 

  • Chang YC, Chen CY, Chang FR, Wu YC (2001) Alkaloids from Lindera glauca. J Chin Chem Soc 48(4):811–815

    Article  CAS  Google Scholar 

  • Chang SY, Cheng MJ, Peng CF, Chang HS, Chen IS (2008) Antimycobacterial butanolides from the root of Lindera akoensis. Chem Biodivers 5(12):2690–2698

    Article  CAS  PubMed  Google Scholar 

  • Chen IS (1977) Studies on the alkaloids of Formosan Lauraceous plants XIX. Alkaloids of Lindera oldhamii Hemsl. (2). J Chin Chem Soc 24(1):41–44

    Article  CAS  Google Scholar 

  • Chen CC, Lin CF, Huang YL (1995) Bioactive constituents from the flower buds and peduncles of Lindera megaphylla. J Nat Prod 58(9):1423–1425

    Article  CAS  Google Scholar 

  • Chen WC, Wang SY, Chiu CC, Tseng CK, Lin CK, Wang HC, Lee JC (2013) Lucidone suppresses hepatitis C virus replication by Nrf2-mediated heme oxygenase-1 induction. Antimicrob Agents Chemother 57(3):1180–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng XL, Ma SC, Wei F, Wang GL, Xiao XY, Lin RC (2007) A new sesquiterpene isolated from Lindera aggregata (Sims) Kosterm. Chem Pharm Bull 55(9):1390–1392

    Article  CAS  PubMed  Google Scholar 

  • Choi HG, Lee HD, Kim SH, Na MK, Kim JA, Lee SH (2013) Lee SH (2013) Phenolic glycosides from Lindera obtusiloba and their anti-allergic inflammatory activities. Nat Prod Commun 8(2):181–182

    CAS  PubMed  Google Scholar 

  • Chou CJ, Lin LC, Chen KT, Chen CF (1994) Northalifoline, a new isoquinolone alkaloid from the pedicels of Lindera megaphylla. J Nat Prod 57(6):689–694

    Article  CAS  Google Scholar 

  • Chou GX, Li QL, Wang ZT, Xu LS, Xu GJ, Norio N, Chaomei M, Massao H (1999) Compositions and anti-rheumatic effect of LEF fraction from the root of Lindera aggregata (Sims) Kosterm. J Plant Resour Envir 8(4):1–6

    CAS  Google Scholar 

  • Chou GX, Noerio N, Ma CM, Wang ZT, Hattori M, Xu LS, Xu GJ (2000) Seven new sesquiterpene lactones from Lindera aggregata. J China Pharm Univ 31(5):339

    CAS  Google Scholar 

  • Chou GX, Norio N, Ma CM, Wang ZT, Masao H (2005) Isoquinoline alkaloids from Lindera aggregata. Chin J Nat Med 3(5):272–275

    CAS  Google Scholar 

  • Chung IM, Moon HI (2011) Composition and immunotoxicity activity of essential oils from Lindera obtusiloba Blume against Aedes aegypti L. Immunopharm Immunotoxicol 33(1):146–149

    Article  CAS  Google Scholar 

  • Chung IM, Moon HI (2012) Composition and immunotoxicity activity of essential oils from Lindera obtusiloba Blume against Aedes aegypti L. Immunopharm Immunother 34(6):1078

    Google Scholar 

  • Comai S, Dall’Acqua S, Grillo A, Castagliuolo I, Gurung K, Innocenti G (2010) Essential oil of Lindera neesiana fruit: chemical analysis and its potential use in topical applications. Fitoterapia 81(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Cui YJ, Wu JJ, Jung SC, Kim GO, Ko RK, Lee HJ, Yoo ES, Kang HK, Suk K, Eun SY (2012) Neuroprotective effect of methyl lucidone against microglia-mediated neurotoxicity. Eur J Pharmacol 690(1–3):4–12

    Article  CAS  PubMed  Google Scholar 

  • Deng ZP, Zhong H, Cui SX, Wang FL, Xie YY, Yao QQ (2011) Cytotoxic sesquiterpenoids from the fruits of Lindera communis. Fitoterapia 82(7):1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Ezaki N, Kato M, Takizawa N, Morimoto S, Nonaka G, Nishioka I (1985) Pharmacological studies on Lindera umbellata Ramus, IV. Effects of condensed tannin related compounds on peptic activity and stress-induced gastric lesions in mice. Planta Med 1:34–38

    Article  PubMed  Google Scholar 

  • Flora of China Editorial Committee (1982) Flora Republicae Popularis Sinicae Lauraceae, Lindera, vol 31. Science Press, Beijing, p 379

    Google Scholar 

  • Flora of China Editorial Committee (2010) Flora of China, vol 7. Science Press, Beijing, p 142. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=118626

  • Freifeld I, Bose G, Eckardt T, Langer P (2007) Synthesis of γ-alkylidenebutenolides by formal [3 + 2] cyclizations of 1,5- and 2,4-bis(trimethylsilyloxy)-1,3,5-hexatrienes with oxalyl chloride. Eur J Org Chem 2:351

    Article  CAS  Google Scholar 

  • Freise C, Erben U, Neuman U, Kim K, Zeitz M, Somasundaram R, Ruehl M (2010) An active extract of Lindera obtusiloba inhibits adipogenesis via sustained Wnt signaling and exerts anti-inflammatory effects in the 3T3-L1 preadipocytes. J Nutr Biochem 21(12):1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Freise C, Kienast WT, Reuhl M, Erben U, Seehofer D, Kim KY, Zeitz M, Somasundaram R (2012) (+)-Episesamin exerts anti-neoplastic effects in human hepatocellular carcinoma cell lines via suppression of nuclear factor-kappa B and inhibition of MMP-9. Invest New Drug 30(6):2087–2095

    Article  CAS  Google Scholar 

  • Freise C, Kienast WT, Erben U, Seehofer D, Kim KY, Zeitz M, Ruehl M, Somasundaram R (2013) (+)-Episesamin inhibits adipogenesis and exerts anti-inflammatory effects in 3T3-L1 (pre)adipocytes by sustained Wnt signalingdown-regulation of PPAR γ and induction of iNOS. J Nutr Biochem 24(3):550–555

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Zhao X, Yao W, Li L (2008) Zhou C (2008) A novel bisbenzylisoquinoline alkaloid from Lindera aggregata. J Chem Res 5:285–286

    Article  Google Scholar 

  • Gan LS, Yao W, Mo JX, Zhou CX (2009a) Alkaloids from Lindera aggregata. Nat Prod Comm 4(1):43–46

    CAS  Google Scholar 

  • Gan LS, Zheng YL, Mo JX, Liu X, Li XH, Zhou CX (2009b) Sesquiterpene lactones from the root tubers of Lindera aggregata. J Nat Prod 72(8):1497–1501

    Article  CAS  PubMed  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gottlieb OR (1972) Chemosystematics of the Lauraceae. Phytochemistry 11:1537–1570

    Article  CAS  Google Scholar 

  • Gu LY, Luo Q, Xiao M, Wu XX, He GQ, Sun Y, Chen T, Xu Q (2008) Anti-oxidative and hepatoprotective activities of the total flavonoids from the leaf of Lindera aggregata (sims) Kosterm. against mice liver injury induced by carbon tetrachloride. Tradit Chin Drug Res Pharmacol 19(6):447–450

    CAS  Google Scholar 

  • Han Z, Zheng YL, Chen N, Luan LJ, Zhou CX, Gan LS, Wu YJ (2008) Simultaneous determination of four alkaloids in Lindera aggregata by ultra-high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr 1212(1):76–81

    Article  CAS  Google Scholar 

  • Hong HK, Yoon WJ, Kim YH, Yoo ES, Jo SH (2009) Inhibition of the human ether-a-go-go-related gene (HERG) K+ channels by Lindera erythrocarpa. J Korean Med Sci 24(6):1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CO, Rhee CH, Won NH, Choi HD, Lee KW (2012) Protective effect of 70% ethanolic extract of Lindera obtusiloba Blume on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in rats. Food Chem Toxicol 55:214–220

    Google Scholar 

  • Hosseinzadeh M, Hadi AHA, Mohamad J, Khalilzadeh MA, Cheahd SC, Fadaeinasab M (2013) Flavonoids and linderone from Lindera oxyphylla and their bioactivities. Comb Chem High Throughput Screen 16:160–166

    CAS  PubMed  Google Scholar 

  • Hsieh YH, Wang SY (2013) Lucidone from Lindera erythrocarpa Makino fruits suppresses adipogenesis in 3T3-L1 cells and attenuates obesity and consequent metabolic disorders in high-fat diet C57BL/6 mice. Phytomedicine 20(5):394–400

    Article  CAS  PubMed  Google Scholar 

  • Huang RL, Chen CC, Huang YL, Ou JC, Hu CP, Chen CF, Chang CM (1998) Antitumor effects of d-dicentrine from the root of Lindera megaphylla. Planta Med 64(3):212–215

    Article  CAS  PubMed  Google Scholar 

  • Huh GW, Park JH, Shrestha S, Lee YH, Ahn EM, Kang HC, Baek NI (2011) Sterols from Lindera glauca Blume stem wood. J Appl Bio Chem 54(4):309–312

    Article  CAS  Google Scholar 

  • Huh GW, Park JH, Shrestha S, Lee YH, Ahn EM, Kang HC, Kim YB, Baek NI (2012) New diarylpropanoids from Lindera glauca Bl. heartwood. Holzforschung 66(5):585–590

    Article  CAS  Google Scholar 

  • Hwang EI, Lee YM, Lee SM, Yeo WH, Moon JS, Kang TH, Park KD, Kim SU (2007) Inhibition of chitin synthase 2 and antifungal activity of lignans from the stem bark of Lindera erythrocarpa. Planta Med 73(7):679–682

    Article  CAS  PubMed  Google Scholar 

  • Hyland BPM (1989) A revision of Lauraceae in Australia (excluding Cassytha). Austral J Syst Bot 2:135–137

    Article  Google Scholar 

  • Ichino K (1989) Two flavonoids from two Lindera umbellata varieties. Phytochemistry 28(3):955–956

    Article  CAS  Google Scholar 

  • Ichino K, Tanaka H, Ito K, Tanaka T, Mizuno M (1988a) Two new dihydrochalcones from Lindera erythrocarpa. J Nat Prod 51(5):915–917

    Article  CAS  PubMed  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1988b) Two novel flavonoids from the leaves of Lindera umbellata var. lancea and L. umbellata. Tetrahedron 44(11):3251–3260

    Article  CAS  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1988c) A lignan from Lindera praecox. Phytochemistry 27(6):1906–1907

    Article  CAS  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1989a) A new flavanone, neolinderatone, from Lindera umbellata Thunb. var. lancea Momiyama. Chem Pharm Bull 37(5):1426–1427

    Article  CAS  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1989b) Studies on the flavonoid components of Lindera umbellata Thunb. var. membranacea (Maxim.) Momiyama. Chem Pharm Bull 37(4):944–947

    Article  CAS  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1989c) Isolation and structures of two new flavonoids from Lindera umbellata. Chem Lett 2:363–366

    Article  Google Scholar 

  • Ichino K, Tanaka H, Ito K (1990) Revised structures of linderatone and methyllinderatone. Heterocycles 31(3):549–553

    Article  CAS  Google Scholar 

  • Ishii H, Tozyo T, Nakamura M, Takeda K (1968) Components of the root of Lindera strychnifolia Vill–XIII. Structure of isogemafurene and linderoxide. Tetrahedron 24(2):625–631

    CAS  Google Scholar 

  • Jeong GS, Lee DS, Li B, Kim JJ, Kim EC, Kim YC (2011) Anti-inflammatory effects of lindenenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells. Eur J Pharmacol 670(1):295–303

    Article  CAS  PubMed  Google Scholar 

  • Jian BL, Yi D, Wei M (2002) A new sesquiterpene from the roots of Lindera strychnifolia. Chinese Chem Lett 13(10):965–967

    Google Scholar 

  • Joshi SC, Mathela CS (2012) Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone. Pharmacogn Res 4(2):80–84

    Article  CAS  Google Scholar 

  • Joshi SC, Verma AR, Mathela CS (2010) Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food Chem Toxicol 48(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Kazuo T, Masako U, Isao H, Youko T, Kenichi T (1975) Carbon-13 NMR spectra of some furanosesquiterpenes, major components of Lindera strychnifolia. Tetrahedron Lett 51:4583–4586

    Google Scholar 

  • Kiang AK, Sim KY (1967) Lindcarpine, an alkaloid from Lindera pipericarpa Boerl (Lauraceae). J Chem Soc (C) 4:282–283

    CAS  Google Scholar 

  • Kim SS, Song G, Oh TH, Kim KN, Yang EJ, Kim JY, Lee NH, Hyun CG (2009) Antimicrobial effect of Lindera erythrocarpa essential oil against antibiotic-resistant skin pathogens. J Pure Appl Microbiol 3(2):429–434

    CAS  Google Scholar 

  • Kim JA, Jung YS, Kim MY, Yang SY, Lee S, Kim YH (2011) Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytother Res 25(11):1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Ko RK, Kang MC, Jin YJ, Choi HM, Kim BS, Han JH, Kim GO, Lee NH (2010) A new diarylpropane from the stem bark of Lindera erythrocarpa Makino. Bull Korean Chem Soc 31(3):739–741

    Article  CAS  Google Scholar 

  • Kobayashi W, Miyase T, Sano M, Umehara K, Warashina T, Noguchi H (2002) Prolyl endopeptidase inhibitors from the roots of Lindera strychnifolia F. VILL. Biol Pharm Bull 25(8):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Komae H, Hayashi H (1972) Phytosterols of the trunks of Lindera obtusiloba. Phytochemistry 11(3):1182

    Article  CAS  Google Scholar 

  • Kouno I, Hirai A, Jiang ZH, Tanaka T (1997) Bisesquiterpenoid from the root of Lindera strychnifolia. Phytochemistry 46(7):1283–1284

    CAS  Google Scholar 

  • Kouno I, Hirai A, Fukushige A, Jiang ZH, Tanaka T (1999) A novel rearranged type of secoeudesmane sesquiterpenoide from the root of Lindera strychnifolia (Sieb. et Zucc.) F. VILLARS. Chem Pharm Bull 47(7):1056–1057

    Article  CAS  Google Scholar 

  • Kouno I, Hirai A, Fukushige A, Jiang ZH, Tanaka T (2001) New eudesmane sesquiterpenes from the root of Lindera strychnifolia. J Nat Prod 64(3):286–288

    Article  CAS  PubMed  Google Scholar 

  • Kozuka M, Miyazawa S, Yokoyama K (1985) Alkaloids from Lindera umbellata, Lindera sericea and their varieties. J Nat Prod 48(1):160–161

    Article  CAS  Google Scholar 

  • Kumar KJS, Hsieh HW, Wang SY (2010a) Anti-inflammatory effect of lucidone in mice via inhibition of NF-κB/MAP kinase pathway. Int Immunopharmacol 10(4):385–392

    Article  CAS  Google Scholar 

  • Kumar KJS, Yang JC, Chu FH, Chang ST, Wang SY (2010b) Lucidone, a novel melanin inhibitor from the fruit of Lindera erythrocarpa Makino. Phytother Res 24(8):1158–1165

    CAS  PubMed  Google Scholar 

  • Kumar KJS, Liao JW, Xiao JH, Vani MG, Wang SY (2012) Hepatoprotective effect of lucidone against alcohol-induced oxidative stress in human hepatic HepG2 cells through the up-regulation of HO-1/Nrf-2 antioxidant genes. Toxicol In Vitro 26(5):700–708

    Article  CAS  Google Scholar 

  • Kuroda M, Sakurai K, Mimaki Y (2011) Chemical constituents of the stems and twigs of Lindera umbellata. J Nat Med 65(1):198–201

    Article  CAS  PubMed  Google Scholar 

  • Kwon HC, Choi SU, Lee JO, Bae KH, Zee OP, Lee KR (1999) Two new lignans from Lindera obtusiloba Blume. Arch Pharm Res 22(4):417–422

    Article  CAS  PubMed  Google Scholar 

  • Kwon HC, Baek NI, Choi SU, Lee KR (2000) New cytotoxic butanolides from Lindera obtusiloba Blume. Chem Pharm Bull 48(5):614–616

    Article  CAS  PubMed  Google Scholar 

  • Lee HH (1968) The structure of lucidone and methyl lucidone. Tetrahedron Lett 40:4243–4246

    Article  Google Scholar 

  • Lee HH, Que YT (1985) Synthesis of lucidones. J Chem Soc Perkin Trans 3:453

    Article  Google Scholar 

  • Lee SM, Baek SH, Lee CH, Lee HB, Kho YH (2002) Cytotoxicity of lignans from Lindera erytherocarpa Makino. Nat Prod Sci 8(3):100–102

    CAS  Google Scholar 

  • Lee HJ, Park Y, Park IK, Shin SC (2004) Constituents of Lindera erythrocarpa stem bark. Nat Prod Sci 10(5):207–210

    CAS  Google Scholar 

  • Lee KY, Kim SH, Jeong EJ, Park JH, Kim SH, Kim YC, Sung SH (2010) New secoisolariciresinol derivatives from Lindera obtusiloba stems and their neuroprotective activities. Planta Med 76(3):294–297

    Article  CAS  PubMed  Google Scholar 

  • Lee JO, Oak MH, Jung SH, Park DH, Auger C, Kim KR, Lee SW, Kerth VBS (2011) An ethanolic extract of Lindera obtusiloba stems causes NO-mediated endothelium-dependent relaxations in rat aortic rings and prevents angiotensin II-induced hypertension and endothelial dysfunction in rats. Naunyn Schmiedebergs Arch Pharmacol 383(6):635–645

    Article  CAS  PubMed  Google Scholar 

  • Leong YW, Harrison LJ, Kadir AA, Connolly JD (1998a) 1-(2-hydroxy-3,4,5,6-tetramethoxyphenyl)-3-phenylpropene from Lindera lucida. Phytochemistry 49(7):2141–2143

    Article  CAS  Google Scholar 

  • Leong YW, Harrison LJ, Bennett GJ, Kadir AA, Connolly JD (1998b) A dihydrochalcone from Lindera lucida. Phytochemistry 47(5):891–894

    CAS  Google Scholar 

  • Li QL, Jian GX, Dou CG, Wang ZT, Huang F (1997) Studies on the analgesic and antiinflammatory action of Radix Linderae extract. J Chin Med Mater 20(12):629–631

    CAS  Google Scholar 

  • Li YM, Ohno Y, Minatoguchi S, Fukuda K, Ikoma T, Ohno T, Akao S, Takemura G, Gotou K, Fujiwara H (2003) Extracts from the roots of Lindera strychifolia induce apoptosis in lung cancer cells and prolongs survival of tumor-bearing mice. Am J Chin Med 31(6):857–869

    Article  PubMed  Google Scholar 

  • Li B, Jeong GS, Kang DG, Lee HS, Kim YC (2009) Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. Eur J Pharmacol 614(1–3):58–65

    Article  CAS  PubMed  Google Scholar 

  • Liang ZH (2011) Radix Linderae essential oil improving the immunity activities and preventing the occurrence of decubitus in aged people. J Med Plants Res 5(16):3733–3738

    Google Scholar 

  • Lin CT, Chu FH, Chang ST, Chueh PJ, Su YC, Wu KT, Wang SY (2007) Secoaggregatalactone-A from Lindera aggregata induces apoptosis in human hepatoma HepG2 cells. Planta Med 73(15):1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Ogihara Y (1975) Constituents of Lindera erythrocarpa. I. Flavonoids from the fruits. Yakugaku Zasshi 95(9):1114–1118

    CAS  PubMed  Google Scholar 

  • Liu L, Gu JW, Chen JD (1982) Studies on the chemical constituents of the leaf of Lindera glauca (Sieb et Zucc) Bl. and their uses. Chin Bull Bot 24(3):252–258

    CAS  Google Scholar 

  • Liu W, Xiao FF, Hu XD (2013) Concise synthesis of lucidone and methyl lucidone. Chin J Org Chem 33:1587–1590

    Article  CAS  Google Scholar 

  • Lu ST, Chen IS (1977) Studies on the alkaloid of Formosan lauraceous plants. XX. Alkaloids of Lindera oldhamii Hemsl. 3. J Chin Chem Soc 24:187–194

    Article  CAS  Google Scholar 

  • Luo YB, Liu M, Yao XJ, Xia YF, Dai Y, Chou GX, Wang ZT (2009) Total alkaloids from Radix Linderae prevent the production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by suppressing NF-κB and MAPKs activation. Cytokine 46(1):104–110

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Liu M, Xia Y, Dai Y, Chou G, Wang Z (2010) Therapeutic effect of norisoboldine, an alkaloid isolated from Radix Linderae, on collagen-induced arthritis in mice. Phytomedicine 17(10):726–731

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Yamazaki M, Katagata Y (2012) Kuromoji (Lindera umbellata) essential oil-induced apoptosis and differentiation in human leukemia HL-60 cells. Exp Ther Med 3(1):49–52

    CAS  PubMed  Google Scholar 

  • Mimaki Y, Kameyama A, Sashida Y, Miyata Y, Fujii A (1995) A novel hexahydrodibenzofuran derivative with potent inhibitory activity on melanin biosynthesis of cultured B-16 melanoma cells from Lindera umbellata bark. Chem Pharm Bull 43(5):893–895

    Article  CAS  PubMed  Google Scholar 

  • Mimura A, Sumioka H, Matsunami K, Otsuka H (2010) Conjugates of an abscisic acid derivative and phenolic glucosides, and a new sesquiterpene glucoside from Lindera strychnifolia. J Nat Med 64(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Min BS, Bae KH, Kim YH, Shimotohno K, Miyashiro H, Hattori M (1998) Inhibitory activities of Korean plants on HIV-1 protease. Nat Prod Sci 4(4):241–244

    CAS  Google Scholar 

  • Morimoto S, Nonaka GI, Nishioka I, Ezaki N, Takizawa N (1985) Tannins and related compounds. XXIX. Seven new methyl derivatives of flavan-3-ols and a 1,3-diarylpropan-2-ol from Cinnamomum cassia, C. obtusifolium and Lindera umbellata var. membranacea. Chem Pharm Bull 33(6):2281–2286

    Article  CAS  Google Scholar 

  • Motl O, Lukes V, Terpenes V (1962) On terpenes. CXXXV. Composition of the oil from Lindera strychnifolia leaves. Collect Czech Chem Comm 27:987–993

    Article  CAS  Google Scholar 

  • Nanao H, Hisashi K (1980) Chemistry and distribution of sesquiterpene furans in Lauraceae. Biochem Syst Ecol 8:381–383

    Article  Google Scholar 

  • Ng S, Lee HH, Bennett GJ (1990) 13C NMR study on linderones and lucidones. Mag Reson Chem 28(4):337–342

    Article  CAS  Google Scholar 

  • Nii H, Furukawa K, Iwakiri M, Kubota T (1978) The constituents of the essential oil from Lindera strychnifolia (Sieb. et Zucc.) F. Vill. fruit. Nippon Nogei Kagaku Kaishi 52(11):533–538

    Article  CAS  Google Scholar 

  • Nii H, Furukawa K, Iwakiri M, Kubota T (1983a) Constituents of essential oils of Lindera obtusiloba blume and Parabenzoin trilobum (Sieb. et Zucc.) Nakai fruit. Nippon Nogei K Kaishi 57(7):663–666

    Article  CAS  Google Scholar 

  • Nii H, Furukawa K, Iwakiri M, Kubota T (1983b) Constituents of the essential oils from Lindera glauca (Sieb. et Zucc.) Blume. Nippon Nogei Kagaku Kaishi 57(8):733–741

    Article  CAS  Google Scholar 

  • Nii H, Furukawa K, Iwakiri M, Kubota T (1983c) A new sesquiterpene carboxylic acid from Lindera glauca (Sieb. et Zucc.) Blume. Nippon Nogei Kagaku Kaishi 57(8):725–732

    Article  CAS  Google Scholar 

  • Niwa M, Iguchi M, Yamamura S (1975a) Structures of C17-obtusilactone dimer and two C21-obtusilactones. Tetrahedron Lett 49:4395–4398

    Article  Google Scholar 

  • Niwa M, Iguchi M, Yamamura S (1975b) Three new obtusilactones from Lindera obtusiloba Blume. Chem Lett 7:655–658

    Article  Google Scholar 

  • Niwa M, Iguchi M, Yamamura S (1977) The isolation and structure of C19-obtusilactone dimer. Chem Lett 6:581–582

    Article  Google Scholar 

  • Noda Y, Mori A (2007) Antioxidant activities of Uyaku (Lindera strychnifolia) leaf extract: a natural extract used in traditional medicine. J Clin Biochem Nutr 41(2):139–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh HM, Choi SK, Lee JM, Lee SK, Kim HY, Han DC, Kim HM, Son KH, Kwon BM (2005) Cyclopentenediones, inhibitors of farnesyl protein transferase and anti-tumor compounds, isolated from the fruit of Lindera erythrocarpa Makino. Bioorg Med Chem 13(22):6182–6187

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Bowling JJ, Carroll JF, Demirci B, Baser KHC, Leininger TD (2012) Natural product studies of U.S. endangered plants: votatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks. Phytochemistry 80:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno T, Nagatsu A, Nakagawa M, Inoue M, Li YM, Minatoguchi S, Mizukami H, Fujiwara H (2005a) New sesquiterpene lactones from water extract of the root of Lindera strychnifolia with cytotoxicity against the human small cell lung cancer cell, SBC-3. Tetrahedron Lett 46(50):8657–8660

    Article  CAS  Google Scholar 

  • Ohno T, Takemura G, Murata I, Kagawa T, Akao S, Minatoguchi S, Fujiwara T, Fujiwara H (2005b) Water extract of the root of Lindera strychnifolia slows down the progression of diabetic nephropathy in db/db mice. Life Sci 77(12):1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Paulo AA, Silas VFJ, Raimundo BF (1999) Synthesis and structural confirmation of natural 1,3-diarylpropanes. J Braz Chem Soc 10(5):347–353

    Article  Google Scholar 

  • Phan BH, Seguin E, Tillequin F, Koch M (1994) Aporphine alkaloids from Lindera myrrha. Phytochemistry 35(5):1363–1365

    Article  CAS  Google Scholar 

  • Qiang Y, Yang ZD, Yang JL, Gao K (2011) Sesquiterpenoids from the root tubers of Lindera aggregata. Planta Med 77(14):1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Ruehl M, Erben U, Kim K, Freise C, Dagdelen T, Eisele S, Kienast WT, Zeitz M, Jia J, Stickel F, Somasundaram R (2009) Extracts of Lindera obtusiloba induce antifibrotic effects in hepatic stellate cells via suppression of a TGF-β-mediated profibrotic gene expression pattern. J Nutr Biochem 20(8):597–606

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BM, Ribnichy DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Bio 3:360–366

    Article  CAS  Google Scholar 

  • Seki K, Sasaki T, Haga K, Kaneko R (1994) Two methoxybutanolides from Lindera glauca. Phytochemistry 36(4):949–951

    Article  CAS  Google Scholar 

  • Seki K, Sasaki T, Wano S, Haga K, Kaneko R (1995) Linderanolides and isolinderanolides, ten butanolides from Lindera glauca. Phytochemistry 40(4):1175–1181

    Article  CAS  Google Scholar 

  • Senthil Kumar KJ, Yang HL, Tsai YC, Hung PC, Chang SH, Lo HW, Shen PC, Chen SC, Wang HM, Wang SY, Chou CW, Hseu YC (2013) Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and down-regulation of NF-кB signaling pathway. Food Chem Toxicol 59:55–66

    Article  CAS  Google Scholar 

  • Shimomura H, Sashida Y, Mimaki Y, Oohara M, Fukai Y (1988) A chalcone derivative from the bark of Lindera umbellata. Phytochemistry 27(12):3937–3939

    Article  CAS  Google Scholar 

  • Shimomura M, Ushikoshi H, Hattori A, Murata I, Ohno Y, Aoyama T, Kawasaki M, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S (2010) Treatment with Lindera strychnifolia reduces blood pressure by decreasing sympathetic nerve activity in spontaneously hypertensive rats. Am J Chin Med 38(3):561–568

    Article  PubMed  Google Scholar 

  • Song MC, Nigussie F, Jeong TS, Lee CY, Regassa F, Markos T, Baek NI (2006) Phenolic compounds from the roots of Lindera fruticosa. J Nat Prod 69(5):853–855

    Article  CAS  PubMed  Google Scholar 

  • Song MC, Nigussie F, Yang HJ, Baek NI (2007) A new benzophenone from Lindera fruticosa. Bull Korean Chem Soc 28(7):1209–1210

    Article  CAS  Google Scholar 

  • Song MC, Nigussie F, Yang HJ, Kim HH, Kim JY, Chung DK, Baek NI (2008) Phenolic glycosides from Lindera fruticosa root and their inhibitory activity on osteoclast differentiation. Chem Pharm Bull 56(5):707–710

    Article  CAS  PubMed  Google Scholar 

  • Su MJ, Nieh YC, Huang HW, Chen CC (1994) Dicentrine, an α-adrenoceptor antagonist with sodium and potassium channel blocking activities. Naunyn Schmiedebergs Arch Pharmacol 349(1):42–49

    CAS  PubMed  Google Scholar 

  • Suh WM, Park SB, Lee S, Kim HH, Suk K, Son JH, Kwon TK, Choi HG, Lee SH, Kim SH (2011) Suppression of mast-cell-mediated allergic inflammation by Lindera obtusiloba. Exp Biol Med 236(2):240–246

    Article  CAS  Google Scholar 

  • Sumioka H, Harinantenaina L, Matsunami K, Otsuka H, Kawahata M, Yamaguchi K (2011) Linderolides A-F, eudesmane-type sesquiterpene lactones and linderoline, a germacrane-type sesquiterpene from the roots of Lindera strychnifolia and their inhibitory activity on NO production in RAW 264.7 cells in vitro. Phytochemistry 72(17):2165–2171

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Minato H, Takeda K (1971) Components of the root of Lindera strychnifolia Vill. Part XVIII. Neosericenyl acetate and dehydrolindestrenolide. J Chem Soc (C) 6:1070–1073

    Google Scholar 

  • Takai M, Liu SY, Ogihara Y, Iitaka Y (1977) Studies on the constituents of Lindera erythrocarpa Makino. III. The isolation and crystal structure of sodium lucidonate. Chem Pharm Bull 25(6):1404–1407

    Article  CAS  Google Scholar 

  • Takeda K, Nagata W (1953) Components of the root of Lindera strychnifolia Vill. V. Azulenes isolated from linderene by zinc-dust distillation. Pharm Bull 1(2):164–169

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Minato H, Ishikawa M (1964a) Components of the root of Lindera strychnifolia Vill. Part VIII. Structures of linderalactone and isolinderalactone. J Chem Soc (C) 4578–4582. doi:10.1039/JR9640004578

  • Takeda K, Minato H, Ishikawa M, Miyawaki M (1964b) Components of the root of Lindera strychnifolia Vill. IX. Structures of lindestrene and linderene acetate. Tetrahedron 20:2655–2663

    Article  CAS  Google Scholar 

  • Takeda K, Minato H, Horibe I (1967a) Components of the root of Lindera strychnifolia Vill. Part XII. The structure of isolinderoxide. J Chem Soc (C) 7:631–634

    CAS  Google Scholar 

  • Takeda K, Minato H, Horibe I, Miyawaki M (1967b) Components of the root of Lindera strychnifolia Vill. Part XII. The structure of isolinderoxide. J Chem Soc (C) 1:631–634

    Google Scholar 

  • Takeda K, Horibe I, Minato H (1968) Components of the root of Lindera strychnifolia Vill. Part XIV. Sesquiterpene lactones from the root of Lindera strychnifolia Vill. J Chem Soc (C) 5:569–572

    Google Scholar 

  • Takeda K, Horibe I, Teraoka M, Minato H (1969a) Components of the root of Lindera strychnifolia Vill. Part XVII. Structures of neolinderalactone and lindenenone. J Chem Soc (C) 19:2786–2788

    Google Scholar 

  • Takeda K, Ishii H, Tozyo T, Minato H (1969b) Components of the root of Lindera strychnifolia Vill. Part XVI. Isolation of lindenene showing a new fundamental sesquiterpene skeleton, and its correlation with linderene. J Chem Soc (C) 14:1920–1921

    Google Scholar 

  • Takeda K, Sakurawi K, Ishii H (1971) Sesquiterpenes of Lauraceae plants. III. Structure and absolute configuration of delobanone and acetoxydelobanone from Lindera triloba. Tetrahedron 27(24):6049–6055

    Article  CAS  Google Scholar 

  • Takizawa N (1984) Studies on the constituents of Lindera species (I). On the flavonoid compounds of Lindera families. Shoyakugaku Zasshi 38(2):194–197

    CAS  Google Scholar 

  • Tanaka H, Ichino K, Ito K (1984a) A novel dihydrochalcone, linderatin from Lindera umbellata var. lancea. Chem Pharm Bull 32(9):3747–3750

    Article  CAS  Google Scholar 

  • Tanaka H, Ichino K, Ito K (1984b) Dihydrochalcones from Lindera umbellata. Phytochemistry 23(5):1198–1199

    Article  CAS  Google Scholar 

  • Tanaka H, Ichino K, Ito K (1985) A novel flavanone, linderatone, from Lindera umbellata. Chem Pharm Bull 33(6):2602–2604

    Article  CAS  Google Scholar 

  • Teng CM, Yu SM, Ko FN, Chen CC, Huang YL, Huang TF (1991) Dicentrine, a natural vascular α 1-adrenoceptor antagonist, isolated from Lindera megaphylla. Br J Pharm 104(3):651–656

    Article  CAS  Google Scholar 

  • Tsai IL, Hung CH, Duh CY, Chen JH, Lin WY, Chen IS (2001) Cytotoxic butanolides from the stem bark of formosan Lindera communis. Planta Med 67(9):865–867

    Article  CAS  PubMed  Google Scholar 

  • Tsai IL, Hung CH, Duh CY, Chen IS (2002) Cytotoxic butanolides and secobutanolides from the stem wood of formosan Lindera communis. Planta Med 68(2):142–145

    Article  CAS  PubMed  Google Scholar 

  • Tsui HB (1987) A study on the system of Lindera. J Grad Sch Chin Acad Sci 25(3):167–171

    Google Scholar 

  • Van der Werff H, Richter HG (1996) Toward an improved classif ication of Lauraceae. Ann Miss Bot Gard 83:409–418

    Article  Google Scholar 

  • Wager H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  CAS  Google Scholar 

  • Wang FS, Yang DP, Ren SX, Peng JF (1999) Chemical constituents of volatile oil from fruits of Lindera communis and its antifungal and antibacteria activities. Nat Prod Res Devel 11(6):1–5

    Google Scholar 

  • Wang NY, Minatoguchi S, Arai M, Uno Y, Hashimoto K, Chen XH, Fukuda K, Akao S, Takemura G, Fujiwara H (2004) Lindera strychnifolia is protective against post-ischemic myocardial dysfunction through scavenging hydroxyl radicals and opening the mitochondrial KATP channels in isolated rat hearts. Am J Chin Med 32(4):587–598

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Dai Y, Chou GX, Wang CH, Wang ZT (2006) Effects of total alkaloids from Radix Linderae on adjuvant-induced arthritis in rats. Pharmacol Clin Chin Mater Clin Med 22(3–4):63–66

    Google Scholar 

  • Wang C, Dai Y, Yang J, Chou GX, Wang CH, Wang ZT (2007) Treatment with total alkaloids from Radix Linderae reduces inflammation and joint destruction in type II collagen-induced model for rheumatoid arthritis. J Ethnopharmacol 111(2):322–328

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Lan XY, Xiao JH, Yang JC, Kao YT, Chang ST (2008) Anti-inflammatory activity of Lindera erythrocarpa fruits. Phytother Res 22(2):213–216

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Lee HJ, Wang L, Jiang C, Baek NI, Kim SH, Lü JX (2009) Anti-androgen receptor signaling and prostate cancer inhibitory effects of sucrose- and benzophenone-compounds. Pharm Res 26(5):1140–1148

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Gao Y, Zhang L, Bai B, Hu YN, Dong ZJ, Zhai QW, Zhu HJ, Liu JK (2010a) A pair of windmill-shaped enantiomers from Lindera aggregata with activity toward improvement of insulin sensitivity. Org Lett 12(14):3196–3199

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Gao Y, Zhang L, Liu JK (2010b) Bi-linderone, a highly modified methyl-linderone dimer from Lindera aggregata with activity toward improvement of insulin sensitivity in vitro. Org Lett 12(10):2354–2357

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Tang SA, Zhai HY, Duan HQ (2011) Study on anti-tumor metastatic constituents from Lindera glauca. China J Chin Mater Med 36(8):1032–1036

    CAS  Google Scholar 

  • Wei ZF, Wang FY, Song J, Lu Q, Zhao P et al (2012) Norisoboldine inhibits the production of interleukin-6 in fibroblast-like synoviocytes from adjuvant arthritis rats through PKC/MAPK/NF-kB-p65/CREB pathways. J Cell Biochem 113:2785–2795

    Article  CAS  PubMed  Google Scholar 

  • Wei ZF, Tong B, Xia YuF, Lu Q, Chou GX, Wang ZT, Dai Y (2013) Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-kB/c-Fos/NFATc1 pathways. PLoS ONE 8(3):e59171 (1–16)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan R, Yang Y, Zeng YY, Zou GL (2009) Cytotoxicity and antibacterial activity of Lindera strychnifolia essential oils and extracts. J Ethnopharmacol 121(3):451–455

    Article  CAS  PubMed  Google Scholar 

  • Yan RW, Peng XM, Zou GL (2011) Anticancer and antioxidant activity of Lindera strychnifolia extracts. J Wuhan Univ (Nat Sci Ed) 57(3):265–268

    CAS  Google Scholar 

  • Yang SL, Liu XK (2005) Three new diarylpropanes from Dioscorea composita. Chinese Chem Lett 16(1):57–60

    CAS  Google Scholar 

  • Yang CP, Huang GJ, Huang HC, Chen YC, Chang CI, Wang SY, Chen IS, Tseng YH, Chien SC, Kuo YH (2012) A new butanolide compound from the aerial part of Lindera akoensis with anti-inflammatory activity. Molecules 17:6585–6592

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EAB, Klint JK, Rong M, Lai R, King GF (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain modes. Proc Natl Acad Sci USA 110:17534–17539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SM, Chen CC, Ko FN, Huang YL, Huang TF, Teng CM (1992a) Dicentrine, a novel antiplatelet agent inhibiting thromboxane formation and increasing the cyclic AMP level of rabbit platelets. Biochem Pharm 43(2):323–329

    Article  CAS  PubMed  Google Scholar 

  • Yu SM, Hsu SY, Ko FN, Chen CC, Huang YL, Huang TF, Teng CM (1992b) Hemodynamic effects of dicentrine, a novel α 1-adrenoceptor antagonist: comparison with prazosin in spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Pharm 106(4):797–801

    Article  CAS  Google Scholar 

  • Zetler G (1988) Neuroleptic-like, anticonvulsant and antinociceptive effects of aporphine alkaloids: bulbocapnine, corytuberine, boldine and glaucine. Arch Int Pharmacodyn 296:255–281

    CAS  PubMed  Google Scholar 

  • Zhang CF, Wang ZT (2000) An advance in the study on medicinal plant of Lindera. J Shenyang Univ 17(3):230–234

    CAS  Google Scholar 

  • Zhang CF, Nakamura N, Tewtrakul S, Hattori M, Sun QS, Wang ZT, Fujiwara T (2002) Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chem Pharm Bull 50(9):1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Zhang CF, Chou GX, Sun QS, Wang ZT, Hattori M (2003a) Tannins from the stems of Lindera aggregata. Chin J Nat Med 1(4):204–206

    CAS  Google Scholar 

  • Zhang CF, Sun QS, Wang ZT, Masao H, Supinya T (2003b) Inhibitory activities of tannins extracted from stem of Lindera aggregata against HIV-1 integrase. Chin Pharm J 38(12):911–914

    CAS  Google Scholar 

  • Zhang CF, Sun QS, Wang ZT, Masao H (2003c) One new A-type proanthocyanidin trimer from Lindera aggregata (Sims) Kosterm. Chin Chem Lett 14(10):1033–1036

    CAS  Google Scholar 

  • Zhang M, Zhang CF, Sun QS, Wang ZT (2006) Two new compounds from Lindera chunii Merr. Chinese Chem Lett 17(10):1325–1327

    CAS  Google Scholar 

  • Zhang HY, Chen LL, Li XJ, Zhang J (2010) Evolutionary inspirations for drug discoverevolutionary inspirations for drug discovery. Trends in Pharmacol Sci 31:443–448

    Article  CAS  Google Scholar 

  • Zhang Y, Wang C, Wang L, Parks GS, Zhang X, Guo Z, Ke Y, Li KW, Kim MK, Vo B, Borrelli E, Ge G, Yang L, Wang Z, Garcia-Fuster MJ, Luo ZD, Liang XM, Civelli O (2014) A novel analgesic isolated from a traditional Chinese medicine. Curr Biol 24:117–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao QS, Cong YW (2007) Michael reaction acceptor molecules in chemical biology. Prog Chem 19:1972–1976

    CAS  Google Scholar 

  • Zhao QZ, Zhao YM, Wang KJ (2005) Alkaloids from the root of Lindera augustifolia. Acta Pharm Sin 40(10):931–934

    CAS  Google Scholar 

  • Zhao QZ, Zhao YM, Wang KJ (2006) Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen. J Ethnopharmacol 106(3):408–413

    Article  CAS  PubMed  Google Scholar 

  • Zhu YZ, Liu MC, Hu DY, Jin LH, Xue W, Yang S (2012) Chemical constituents of Lindera aggregata. Chin J Exp Tradit Med Formul 18(16):123–126

    CAS  Google Scholar 

Download references

Acknowledgments

This paper was financially supported by grants from the National Natural Science Foundation of China (No. 81473426, 81303309) and the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education of China. All authors that are cited in the paper are acknowledged for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyun Chai.

Ethics declarations

Conflict of interest

The authors declare no conflict interests.

Additional information

Yuan Cao and Bianfei Xuan have contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xuan, B., Peng, B. et al. The genus Lindera: a source of structurally diverse molecules having pharmacological significance. Phytochem Rev 15, 869–906 (2016). https://doi.org/10.1007/s11101-015-9432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9432-2

Keywords

Navigation