Skip to main content
Log in

Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Nowadays, new strategies for pest and disease control to be used in rotation with or replacement of conventional pesticides are required. Essential oils (EOs), as botanical pesticides, provide a potential resource to develop more environmentally friendly and less toxic means of control to be applied in different produces. Tomato crop is affected by many insects and fungal diseases, among which, the insects Trialeurodes vaporariorum and Tuta absoluta, and the fungi Alternaria spp. and Botrytis cinerea are of great incidence. In this work two EOs from Uruguayan specimens of the local species Eupatorium buniifolium and the world-wide distributed Artemisia absinthium (Asteraceae) were characterized in their chemical composition and insecticidal and antifungal activities. We found that the EO from local A. absinthium is rich in oxygenated monoterpenes and belongs to the thujone chemotype (β-Thujone abundance is 56 ± 2 %, and α-Thujone, 1.67 ± 0.07 %). On the other hand, monoterpene hydrocarbons (α-Pinene, 22 ± 2 %) and sesquiterpene hydrocarbons [(E)-β-Guaiene, 10 ± 1 %] are the most abundant components of E. buniifolium EO. Eventhough both EOs chemically differ, they exhibit insecticidal and antifungal activity not only by direct contact but also by contact with their vapors against the tested organisms. These results may indicate that these EOs could be raw material to develop control agents to manage some of the main pests and fungal diseases of tomato crops with only one kind of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Ent 18:65–267

    Google Scholar 

  • Adams R (2007) Identification of essential oils components by gas chromatography/mass spectrometry. Allured Publishing Corporation Illinois, Carol Stream

    Google Scholar 

  • Albuquerque MRJR, Silveira ER, Uchôa DEDA, Lemos TLG, Souza EB, Santiago GMP, Pessoa ODL (2004) Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (U.C.) Baker (Asteraceae). J Agric Food Chem 52:6708–6711

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Castellanos P, Bishop C, Pascual-Villalobos M (2001) Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 57:99–102

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2004) Tuta absoluta: data sheets on quarantine pests. EPPO Bull 35:434–435

    Google Scholar 

  • Anonymous (2005) Whitefly knowledgebase. United States Department of Agriculture, Knowledgebase Retrieved May 29, 2012 from http://entomology.ifas.ufl.edu/fasulo/whiteflies/wfly0082.htm

  • Anonymous (2009) First report of Tuta absoluta in Malta/First report of Tuta absoluta in Switzerland. EPPO Reporting Service: Pests Dis 10:2

  • Anonymous (2012) Commercially used biological control agents: EPPO database. Retrieved May 29, 2012 from http://archives.eppo.int/EPPOStandards/biocontrol_web/coleoptera.htm?utm_source=archives.eppo.org&utm_medium=int_redirect

  • Basta A, Tzakou O, Couladis M, Pavlovic M (2007) Chemical composition of Artemisia absinthium L. from Greece. J Essent Oil Res 19(4):316–318

    Article  CAS  Google Scholar 

  • Benvenga SR, Fernandes OA, Gravena S (2007) Decision making for integrated pest management of the South American tomato pinworm based on sexual pheromone traps. Hortic Brasileira 25(2):164–169

    Article  Google Scholar 

  • Bernal R (2009) Botrytis cinerea moho gris: importante patógeno en diferentes cultivos bajo protección. Revista INIA Uruguay 20:41–43

    Google Scholar 

  • Bernal R (2010) Enfermedades de tomate (Lycopersicum esculentum Mill.) en invernadero en las zonas de Salto y Bella Unión. Serie Técnica. INIA. Montevideo, Editorial Hemisferio Sur S.R.L. 181:1–71

  • Bononi M, Giorgi A, Cocucci M, Tateo F (2006) Evaluation of productivity and volatile compound quality of Artemisia absinthium L. planted in Valle Camonica (Italy). J Sci Food Agric 86(15):2592–2596

    Article  CAS  Google Scholar 

  • Chialva F, Liddle P, Doglia G (1983) Chemotaxonomy of wormwood (Artemisia absinthum L.). I. Composition of the essential oil of several chemotypes. Eur Food Res Technol 176(5):363–366

    CAS  Google Scholar 

  • Choi WI, Lee EH, Choi BR, Park HM, Ahn YJ (2003) Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera:Aleyrodidae). J Econ Entomol 96(5):1479–1484

    Article  PubMed  CAS  Google Scholar 

  • Ciccia G, Coussio J, Mongelli E (2000) Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants. J Ethnopharmacol 72:185–189

    Article  PubMed  CAS  Google Scholar 

  • Dancewicz K, Gabrys B (2008) Effect of extracts of garlic (Allium sativum L.), wormwood (Artemisia absinthium L.) and tansy (Tanaceum vulgare L.) on the behaviour of the peach potato aphid Myzus persicae (Sulz.) during the settling on plants. Pesticides 3–4:93–99

    Google Scholar 

  • Dellacassa AD, Bailac PN, Ponzi MI, Ruffinengo SR, Eguaras MJ (2003) In vitro activity of essential oils from San Luis, Argentina against Ascosphaera apis. J Essent Oil Res 15(4):282–285

    Article  Google Scholar 

  • Delobel A, Malonga P (1987) Insecticidal properties of six plant materials against Caryecon serratus (OL.) (Coleoptera: Bruchidae). J Stored Prod Res 23(3):173–176

    Article  Google Scholar 

  • Derwich E, Benziane Z, Boukir A (2009) Chemical compositions and insecticidal activity of essential oils of three plants Artemisia sp: Artemisia herba-alba, Artemisia absinthium and Artemisia pontica (Morocco). Electron J Environ Agric Food Chem 8(11):1202–1211

    CAS  Google Scholar 

  • Dey S, Sinha B, Kalita J (2005) Effect of Eupatorium adenophorum Spreng leaf extracts on the Mustard Aphid, Lipaphis erysimi Kalt: A scanning electron microscope study. Microsc Res Tech 66:31–36

    Article  PubMed  Google Scholar 

  • DIGEGRA-MGAP (2009) Principales problemas sanitarios de algunas hortalizas del Uruguay. Retrieved May, 2010 from http://www.mgap.gub.uy/direcciondelagranja/ElSectorGranjero/ProblemasSanitarios.htm

  • Dubey RK, Kumar R, Jaya T, Dubey NK (2007) Evaluation of Eupatorium cannabinum Linn. oil in enhancement of shelf life of mango fruits from fungal rotting. World J Microbiol Biotechnol 23(4):467–473

    Article  CAS  Google Scholar 

  • Ei-Seedi HR (2006) Antimicrobial activity and chemical composition of essential oil of Eupatorium glutinosum (Lam.). Nat Prod Commun 1(8):655–659

    Google Scholar 

  • El-Sayed A (2011) The pherobase: database of pheromones and semiochemicals. In: The Pherobase, 2003–2011, Available from: http://www.pherobase.com

  • Filho MM, Vilela EF, Attygalle AB, Meinwald J, Svatoš A, Jham GN (2000) Field trapping of tomato moth, Tuta absoluta with pheromone traps. J Chem Ecol 26(4):875–881

    Article  Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31(2):93–123

    Article  Google Scholar 

  • Gleiser RM, Bonino MA, Zygadlo JA (2010) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti (Diptera: Culicidae). Parasitol Res 108(1):69–78

    Article  PubMed  Google Scholar 

  • Gonzalez-Coloma A, Bailen M, Diaz CE, Fraga BM, Martinez-Diaz R, Zuniga GE, Contreras RA, Cabrera R, Burillo J (2011) Major components of Spanish cultivated Artemisia absinthium populations: antifeedant, antiparasitic, and antioxidant effects. Ind Crops Prod 37(1):401–407

    Article  Google Scholar 

  • Gorman K, Hewitt F, Denholm I, Devine GJ (2002) New developments in insecticide resistance in the glasshouse whitefly (Trialeurodes vaporariorum) and the two-spotted spider mite (Tetranychus urticae) in the UK. Pest Manag Sci 58(2):123–130

    Article  PubMed  CAS  Google Scholar 

  • Granja DGdl (2009) Principales problemas sanitarios de algunas hortalizas del Uruguay. Retrieved May 29, 2012 from http://www.mgap.gub.uy/direcciondelagranja/ElSectorGranjero/ProblemasSanitarios.htm

  • Graven EH, Deans SG, Svoboda KP, Mavi S, Gundidza MG (1992) Antimicrobial and antioxidative properties of the volatile essential oil of Artemisia afra Jacq. Flavour Fragr J 7(3):121–123

    Article  CAS  Google Scholar 

  • Gudaityta O, Venskutonis PR (2007) Chemotypes of Achillea millefolium transferred from 14 different locations in Lithuania to the controlled environment. Biochem Syst Ecol 35(9):582–592

    Article  Google Scholar 

  • IRAC (2009) Susceptibility test methods series (Method No: 12a). Retrieved May 29, 2012 from http://www.irac-online.org

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10(2):197–204

    Article  CAS  Google Scholar 

  • Judzentiene A, Budiene J (2010) Compositional variation in essential oils of wild Artemisia absinthium from Lithuania. J Essent Oil-Bear Plants 13(3):275–285

    CAS  Google Scholar 

  • Judzentiene A, Tomi F, Casanova J (2009) Analysis of essential oils of Artemisia absinthium L. from Lithuania by CC, GC(RI), GC-MS and C-13 NMR. Nat Prod Commun 4(8):1113–1118

    PubMed  CAS  Google Scholar 

  • Juteau F, Jerkovic I, Masotti V, Milos M, Mastelic J, Bessiere JM, Viano J (2003) Composition and antimicrobial activity of the essential oil of Artemisia absinthium from Croatia and France. Planta Med 69(2):158–161

    Article  PubMed  CAS  Google Scholar 

  • Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 66(12):1304–1307

    Article  PubMed  CAS  Google Scholar 

  • Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A (2005a) Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J Agric Food Chem 53(5):1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A (2005b) Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, A. santonicum, and A. spicigera essential oils. J Agric Food Chem 53(24):9452–9458

    Article  PubMed  CAS  Google Scholar 

  • Lancelle HG, Giordano OS, Sosa ME, Tonn CE (2009) Chemical composition of four essential oils from Eupatorium spp. biological activities toward Tribolium castaneum (Coleoptera: Tenebrionidae). Rev Soc Entomol Argent 68(3–4):329–338

    Google Scholar 

  • Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34(1):113–119

    Article  Google Scholar 

  • Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69(8):1732–1738

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo D, Paz D, Davies P, Villamil J, Vila R, Cañigueral S, Dellacassa E (2005) Application of multidimensional Gas Chromatography to the enantioselective characterisation of the essential oil of Eupatorium buniifolium Hooker et Arnott. Phytochem Anal 16:39–44

    Article  PubMed  CAS  Google Scholar 

  • Lourençao AL, Alves AC, Fugi CGQ, Matos ES (2008) Outbreaks of Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae) under field conditions in the State of Sao Paulo, Brazil. Neotrop Entomol 37:89–91

    Article  PubMed  Google Scholar 

  • Lucatti AF, Alvarez AE, Machado CR, Gilardon E (2010) Resistance of tomato genotypes to the greenhouse whitefly Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae). Neotrop Entomol 39(5):792–798

    Article  PubMed  Google Scholar 

  • Maggi M, Mangeaud A, Carpinella M, Ferrayoli C, Valladares G, Palacios S (2005) Laboratory evaluation of Artemisia annua L. extract and artemisinin activity against Epilachna paenulata and Spodoptera eridania. J Chem Ecol 31(7):1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Maia JGS, MdGB Zoghbi, Andrade EHA, da Silva MHL, Luz AIR, da Silva JD (2002) Essential oils composition of Eupatorium species growing wild in the Amazon. Biochem Syst Ecol 30(11):1071–1077

    Article  CAS  Google Scholar 

  • Mangena T, Muyima NYO (1999) Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeast strains. Lett Appl Microbiol 28(4):291–296

    Article  PubMed  CAS  Google Scholar 

  • Martín L, Julio LF, Burillo J, Sanz J, Mainar AM, González-Coloma A (2011) Comparative chemistry and insect antifeedant action of traditional (Clevenger and Soxhlet) and supercritical extracts (CO2) of two cultivated wormwood (Artemisia absinthium L.) populations. Ind Crops Prod 34(3):1615–1621

    Article  Google Scholar 

  • Mohamed A, El-Sayed MA, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS (2010) Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod 4(1):1–25

    CAS  Google Scholar 

  • Moreau TL, Isman MB (2012) Combining reduced-risk products, trap crops and yellow sticky traps for greenhouse whitefly (Trialeurodes vaporariorum) management on sweet peppers (Capsicum annum). Crop Prot 34:42–46

    Article  CAS  Google Scholar 

  • Muschietti L, Derita M, Salsen V, de Dios Muñoz J, Ferraro G, Zacchino S, Martino V (2005) In vitro antifungal assay of traditional Argentine medicinal plants. J Ethnopharmacol 102(2):233–238

    Article  PubMed  Google Scholar 

  • Negahban M, Moharramipour S, Sefidkon F (2006) Chemical composition and insecticidal activity of Artemisia scoparia essential oil against three Coleopteran stored-product insects. J Asia Pac Entomol 9(4):1–8

    Article  Google Scholar 

  • Okijanade A, Wiemer D (1985) Ant-repellent sesquiterpene lactones from Eupatorium quadrangularae. Phytochemistry 6:1199–1201

    Article  Google Scholar 

  • Orava A, Arakb A, Müüriseppa M, Kailas T (2006) Composition of the essential oil of Artemisia absinthium L. of different geographical origin. Proc Estonian Acad Sci Chem 55(3):155–165

    Google Scholar 

  • Palacios S, Maggi M, Bazán C, Carpinella M, Turco M, Munoz A, Alonso R, Nunez C, Cantero J, Defago M, Ferrayoli C, Valladares G (2007) Screening of Argentinian plants for pesticide activity. Fitoterapia 78:580–584

    Article  PubMed  Google Scholar 

  • Paolini J, Barboni T, Desjobert J-M, Djabou N, Muselli A, Costa J (2010) Chemical composition, intraspecies variation and seasonal variation in essential oils of Calendula arvensis L. Biochem Syst Ecol 38(5):865–874

    Article  CAS  Google Scholar 

  • Perez-Alonso MJ, Velasco-Negueruela A, Palá-Paú J, Sanz J (2003) Variations in the essential oil composition of Artemisia pedemontana gathered in Spain: chemotype camphor-1,8-cineole and chemotype davanone. Biochem Syst Ecol 31(1):77–84

    Article  CAS  Google Scholar 

  • Perry T, Batterham P, Daborn PJ (2011) The biology of insecticidal activity and resistance. Insect Biochem Mol Biol 41(7):411–422

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe EB, Lagnaoui A (2007) Insect pests in potato. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKLATM, Ross HA (eds) Potato biology and biotechnology. Elsevier Science B.V, Amsterdam, pp 543–567

    Chapter  Google Scholar 

  • Ramezani M, Behravan J, Yazdinezhad A (2004) Chemical composition and antimicrobial activity of the volatile oil of Artemisia khorassanica from Iran. Pharm Biol 42(8):599–602

    Article  CAS  Google Scholar 

  • Rao P, Kumar K, Singh S, Subrahmanyam B (1999) Effect of Artemisia annua oil on development and reproduction of Dysdecus koenigii. J Appl Entomol 139:315–318

    Article  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57(1):405–424

    Article  PubMed  CAS  Google Scholar 

  • Reina M, González-Coloma A, Gutiérrez C, Cabrera R, Henríquez J, Villarroel L (1997) Bioactive saturated pyrrolizidine alkaloids from Heliotropium floridum. Phytochemistry 46:845–853

    Article  CAS  Google Scholar 

  • Reyes M, Rocha K, Alarcón L, Siegwart M, Sauphanor B (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pestic Biochem Physiol 102(1):45–50

    Article  CAS  Google Scholar 

  • Rezaeinodehi A, Khangholi S (2008) Chemical composition of the essential oil of Artemisia absinthium growing wild in Iran Pakistan. J Biol Sci 11:946–949

    CAS  Google Scholar 

  • Ruffinengo S, Eguaras M, Floris I, Faverin C, Bailac P, Ponzi M (2005) LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor. J Econ Entomol 98(3):651–655

    Article  PubMed  CAS  Google Scholar 

  • Sacco T, Chialva F (1988) Chemical characteristics of the oil from Artemisia absinthium collected in Patagony (Argentina). Planta Med 1:93

    Article  Google Scholar 

  • Saleh M (1984) An insecticidal diacetylene from Artemisia monosperma. Phytochemistry 23(11):2497–2498

    Article  CAS  Google Scholar 

  • Seaman FC (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48(2):121–595

    Article  CAS  Google Scholar 

  • Siqueira HAA, Guedes RNC, Picanco MC (2000) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric Forest Entomol 2(2):147–153

    Article  Google Scholar 

  • Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47(4):247–251

    Article  Google Scholar 

  • Soliman M (2007) Phytochemical and toxicological studies of Artemisia L. (Compositae) essential oil against some insect pests. Arch Pytopathol Plant Prot 40(2):128–138

    Article  CAS  Google Scholar 

  • Sosa ME, Lancelle HG, Tonn CE, Andres MF, Gonzalez-Coloma A (2012) Insecticidal and nematicidal essential oils from Argentinean Eupatorium and Baccharis spp. Biochem Syst Ecol 43:132–138

    Article  CAS  Google Scholar 

  • Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns: a review and analysis. Pestic Biochem Physiol 102(1):1–10

    Article  CAS  Google Scholar 

  • Svatoš A, Attygalle AB, Jham GN, Frighetto RTS, Vilela EF, Šaman D, Meinwald J (1996) Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae). J Chem Ecol 22(4):787–800

    Article  Google Scholar 

  • Tabanca N, Bernier UR, Tsikolia M, Becnel JJ, Sampson B, Werle C, Demirci B, Baser KHC, Blythe EK, Pounders C, Wedge DE (2010) Eupatorium capillifolium essential oil: chemical composition, antifungal activity, and insecticidal activity. Nat Prod Commun 5(9):1409–1415

    PubMed  CAS  Google Scholar 

  • Tripathi A, Prajapati V, Accarwal K, Khanuja S, Kumar A (2000) Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J Econ Entomol 93:43–47

    Article  PubMed  CAS  Google Scholar 

  • Tripathi A, Prajapati V, Accarwal K, Kumar A (2001) Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castanaeum (Coleoptera: Tenebrionidae). J Econ Entomol 94(4):959–964

    Article  Google Scholar 

  • Tripathi P, Dubey NK, Shukla AK (2008) Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol 24(1):39–46

    Article  CAS  Google Scholar 

  • Vázquez-Luna A, Pérez-Flores L, Díaz-Sobac R (2007) Biomolécules con actividad insecticida: Una alternativa para mejorar la seguridad alimentaria. Cienc Tecnol Aliment 5(4):306–313

    Article  Google Scholar 

  • Verçosa de Magalhães S, Jham G, Picanço M, Magalhães G (2001) Mortality of second-instar larvae of Tuta absoluta produced by the hexane extract of Lycopersicon hirsutum f. glabratum (PI 134417) leaves. Agric Forest Entomol 3:297–303

    Article  Google Scholar 

  • Wang J, Zhu F, Zhou L, Niu C, Lei C (2006) Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 42:339–347

    Article  CAS  Google Scholar 

  • Zibaee A, Bandani A (2010) A study on the toxicity of a medicinal plant, Artemisia annua L. (Asteracea) extracts to the sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). J Plant Prot Res 50(1):89–96

    Article  Google Scholar 

  • Zittner TA (1986). botrytis gray mold of greenhouse and field tomato. Vegetable crops Retrieved May 31, 2012 from http://vegetablemdonline.ppath.cornell.edu/factsheets/Tomato_Botrytis.htm

Download references

Acknowledgments

Financial support from the Comisión Sectorial de Investigación Científica (CSIC, Universidad de la República –UDELAR-; Grant from I + D 2009 Program) is acknowledged. Graduate scholar ships from the Agencia Nacional de Investigación e Innovación (ANII), CSIC and the Laboratorio Tecnológico de Uruguay (LATU)—School of Chemistry, UDELAR were granted to MLU. We also acknowledge the Instituto Nacional de Investigaciones Agropecuarias (INIA, Uruguay) for EO distillation (I.A. José Villamil); for help with the bioassay designs (I.A. Roberto Zoppolo); and isolation of Alternaria (I.A. Gustavo Giménez). The Cátedra de Microbiología, School of Chemistry, UDELAR (Dra. Silvana Vero) provided B. cinerea culture. Prof. Eduardo Alonso-Paz (Cátedra de Botánica, School of Chemistry, UDELAR) identified plant material. Lic. Estela Santos collected the original plant material. The Laboratorio de Biocatálisis y Biotransformaciones from the School of Chemistry, UDELAR, allowed to use their installations for microbiology work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Rossini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umpiérrez, M.L., Lagreca, M.E., Cabrera, R. et al. Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases. Phytochem Rev 11, 339–350 (2012). https://doi.org/10.1007/s11101-012-9253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9253-5

Keywords

Navigation