Skip to main content

Advertisement

Log in

Bioactive lichen metabolites: alpine habitats as an untapped source

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Lichens are fungal and algal/cyanobacterial symbioses resulting in the production of specific metabolites. Some of these are forming an available biomass for phytochemical investigations, including the assessment of biological activities of the isolated compounds. The alpine or polar region are characterised by highly stressful environmental conditions for many organisms, but lichens are among the dominating organisms in these habitats. In the performant mutual protective system, lichen fungi often accumulate high amounts of metabolites with specific physicochemical properties (UV absorbents, hydrophobicity) which help the lichens to survive. Unique secondary metabolites and polysaccharides have been isolated and tested from these organisms. Even though this has been tested until now only with a low number of compounds so far, interesting activities have been recorded. We review here some of the antimicrobial, anti-inflammatory, antiproliferative and antioxidant activities properties described. Solutions with axenic biotechnological cultivation of each symbiotic partner and particularly the mycobiont to obtain the lichen secondary metabolites are challenging to overcome the limitations for the supply of these rare compounds. Additionally, these lichens appear to harbour a diversity of culturable microorganisms from which active compounds have also been isolated recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ara G, Teicher BA (1996) Cyclooxygenase and lipooxygenase inhibitors in cancer therapy. Prostaglandins Leukot Essent Fatty Acids 54:3–16

    PubMed  CAS  Google Scholar 

  • Asta J (1984) Flore et végétation lichéniques des étages alpin supérieur et nival des Alpes Nord-Occidentales françaises. Documents d’écologie Pyrénéenne 3–4:119–123

    Google Scholar 

  • Asta J, Juge C, Gout E et al (1999) Lichens: models to study the adaptation to extrem high mountain environment. Bull Inf Ass Fr Lichénol Mémoires 3:131

    Google Scholar 

  • Aubert S, Juge C, Boisson AM et al (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297

    PubMed  CAS  Google Scholar 

  • Baron M, Iacomini M, Fanta ES, Gorin PAJ (1991) Galactomannan, lichenan and isolichenan from the polysaccharide-rich lichen Neuropogon aurantiaco-ater. Phytochemistry 30(9):3125–3126

    CAS  Google Scholar 

  • Barry VC, Twomey D (1950) Antituberculous substances. VI. Derivatives of diploicin. Proc R Irish Acad 53B:55–59

    CAS  Google Scholar 

  • Bartak M, Hajek J, Vrablikova H et al (2004) High-light stress and photoprotection in Umbilicaria antartica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol 6:333–341

    PubMed  CAS  Google Scholar 

  • Bazin MA, Le Lamer AC, Delcros JG et al (2008) Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg Med Chem 16:8737–8744

    PubMed  Google Scholar 

  • Beckett RP, Kranner I, Minibayeva FV (2008) Stress physiology and the symbiosis. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 134–151

  • Behera BC, Adawadkar B, Makhija U (2003) Inhibitory activity of xanthine oxidase and superoxide-scavenging activity in some taxa of the lichen family Graphidaceae. Phytomedicine 10:536–543

    PubMed  CAS  Google Scholar 

  • Bézivin C, Tomasi S, Rouaud I et al (2004) Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med 70:877–880

    Google Scholar 

  • Bhattarai HD, Paudel B, Hong SG et al (2008) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484

    PubMed  Google Scholar 

  • Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685

    PubMed  CAS  Google Scholar 

  • Bjerke JW, Elvebakk A, Dominguez E et al (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    PubMed  CAS  Google Scholar 

  • Bodo B, Molho D (1980) Structure des acides isomuronique et neuropogolique, nouveaux acides aliphatiques du lichen Neuropogon trachycarpus. Phytochemistry 19:1117–1120

    CAS  Google Scholar 

  • Borkowski B, Wozniak W, Gertig H et al (1964) Bacteriostatic action of some compounds from lichen Cetraria islandica and of usnic acid. Dissertationes Pharmaceuticae 16:189–194

    Google Scholar 

  • Boustie J, Grube M (2005) Lichens, a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287

    CAS  Google Scholar 

  • Boustie J, Lohézic-Le Dévéhat F (2008) Lichen extracts and cancer. In: Watson RR, Preedy VR (eds) Botanical medicine in clinical practice. CAB International, Trowbridge, pp 356–364

  • Brunauer G, Hager A, Krautgartner WD et al (2006) Experimental studies on Lecanora rupicola (L.) Zahlbr.: chemical and microscopical investigations of the mycobiont and re-synthesis stages. Lichenologist 38:577–585

    Google Scholar 

  • Brunauer G, Hager A, Grube M et al (2007) Alteration in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and culture resynthesis stages. Plant Physiol Biochem 45:146–151

    PubMed  CAS  Google Scholar 

  • Bucar F, Schneider I, Ogmundsdottir H et al (2004) Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine 11:602–606

    PubMed  CAS  Google Scholar 

  • Burkholder PR, Evans AW, McVeigh I et al (1945) Further studies on the antibiotic activity of lichens. Bull Torrey Bot Club 72:157–164

    Google Scholar 

  • Burlando B, Ranzanto E, Volante A et al (2009) Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Med 75:607–613

    PubMed  CAS  Google Scholar 

  • Carbonero ER, Smiderle FR, Gracher AHP et al (2006) Structure of two glucans and a galactofuranomannan from the lichen Umbilicaria mammulata. Carbohydr Polym 63:13–18

    CAS  Google Scholar 

  • Cetin H, Tufan-Cetin O, Turk OA, Tay T, Candan M, Yanikoglu A, Sumbul H (2008) Insecticidal activity of major lichen compounds, (-) and (+) usnic acid, against the larvae of house mosquito, Culex pipiens L. Parasitol Res 102:1277–1279

    PubMed  Google Scholar 

  • Cheenpracha S, Vidor NB, Yoshida WY, Davies J, Chang LC (2010) Coumabiocins A−F, aminocoumarins from an organic extract of Streptomyces sp. L-4-4. J Nat Prod 73:880–884

    PubMed  CAS  Google Scholar 

  • Choi H-S, Yim JH, Lee HK et al (2009) Immunomodulatory effects of polar lichens on the function of macrophages in vitro. Mar Biotechnol 11:90–98

    PubMed  CAS  Google Scholar 

  • Chooi YH, Stalker DM, Davis MA et al (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112:147–161

    PubMed  CAS  Google Scholar 

  • Choudhary MI, Saima Jalil A, Atta-ur-Rahman (2005) Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry 66:2346–2350

    PubMed  CAS  Google Scholar 

  • Correché ER, Carrasco M (2002) Cytotoxic screening activity of secondary lichen metabolites. Acta Farm Bonaerense 21:273–278

    Google Scholar 

  • Correché ER, Enriz RD, Piovano M et al (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. ATLA 32:605–615

    PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ et al (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci 102:5074–5078

    PubMed  CAS  Google Scholar 

  • Cragg GM, Newman EDJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    CAS  Google Scholar 

  • Czeczuga B, Obermayer W, Upreti DK, Sharma LR (1996) Carotenoids in lichens in various regions of the Himalayas. J Hattori Bot Lab 80:323–330

    Google Scholar 

  • da Silva Santos NP, Nascimento SC, Wanderley MSO et al (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur Pharm Biopharm 64:154–160

    Google Scholar 

  • Davies J, Wang H, Taylor T et al (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236

    PubMed  CAS  Google Scholar 

  • De Carvahlo EAB, Andrade PP, Silva NH, Pereira EC, Figueiredo RCBQ (2005) Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: an ultrastructural study. Micron 36:155–161

    Google Scholar 

  • de la Torre R, Garcia-Sancho L, Horneck G (2007) Adaptation of the lichen Rhizocarpon geographicum to harsh high-altitude conditions: relevance to a habitable Mars. Eur Space Agency SP-1299:145–150

    Google Scholar 

  • Demleitner S, Kraus J, Franz G (1991) Synthese und antitumoraktivitat von Licheninderivaten. Pharm Unserer Zeit 20:120

    Google Scholar 

  • Denton GH, Karlén W (1973) Lichenometry: its application to Holocene moraine studies in Southern Alaska and Swedish Lapland. Arctic Alpine Res 5:347–352

    Google Scholar 

  • Ding G, Li Y, Fu S et al (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186

    PubMed  CAS  Google Scholar 

  • Durazo FA, Lassman C, Han SHB et al (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol 99:950–952

    PubMed  Google Scholar 

  • Edwards HGM, Newton EM, Wynn-Williams DD (2003) Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. J Mol Struct 651–653:27–37

    Google Scholar 

  • Elix JA, Øvstedal DO (2004) A new Lecanora species from the Arctic with a remarkable chemistry. Graphis Scripta 15:57–59

    Google Scholar 

  • Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (eds) Lichen biology. Cambridge University Press, Cambridge, pp 353–363

  • Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468

    PubMed  CAS  Google Scholar 

  • Elvebakk A, Bjerke JW (2006) The Skibotn area in North Norway—an example of very high lichen species richness far to the north. Mycotaxon 96:141–146

    Google Scholar 

  • Ernst-Russel MA, Elix JA, Chai CL et al (1999) Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett 40:6321–6324

    Google Scholar 

  • Fazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C 62:543–549

    PubMed  CAS  Google Scholar 

  • Fernandez E, Quilhot W, Rubio C et al (2006) Effects of UV radiation on usnic acid in Xanthoparmelia microspora (Müll. Arg. Hale). Photochem Photobiol 82:1065–1068

    PubMed  CAS  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Google Scholar 

  • Francolini I, Norris P, Piozzi A et al (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm and formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    PubMed  CAS  Google Scholar 

  • Freysdottir J, Omarsdottir S, Ingolfsdottir K et al (2008) In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. Int Immunopharmacol 8:423–430

    PubMed  CAS  Google Scholar 

  • Friedmann EI, Sun H (2005) Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: I. hypothesis. Microb Ecol 49:523–527

    PubMed  Google Scholar 

  • Frisvad JC, Larsen TO, Dalsgaard PW et al (2005) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J System Evol Microbiol 56:1427–1437

    Google Scholar 

  • Fukuoka F, Nakanishi M, Shibata S et al (1968) Polysaccharides in lichens and fungi. II. Antitumor activities on sarcoma-180 of the polysaccharide preparations from Gyrophora esculenta Miyoshi, Cetraria islandica (L.) Ach. var. orientalis Asahina, and some other lichens. Gann 59:421–432

    PubMed  CAS  Google Scholar 

  • Gagunashvili AN, Daviðsson SP, Jónsson ZO et al (2009) Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res 113:354–363

    PubMed  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecol 126:462–471

    Google Scholar 

  • Gissurarson S, Sigurdsson S, Wagner H, Ingolfsdottir K (1997) Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of Guinea Pig Taenia coli. J Pharmacol Exp Ther 280:770–773

    PubMed  CAS  Google Scholar 

  • Gonzales I, Ayuso-Sacido A, Anderson A et al (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415

    Google Scholar 

  • Gray D, Nicolaou KC (2004) Total synthesis of hybocarpone and analogues thereof. A facile dimerization of naphthazarins to pentacyclic systems. J Am Chem Soc 126:607–612

    PubMed  Google Scholar 

  • Grube M, Cardinale M, Vieira de Castro J et al (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115

    PubMed  Google Scholar 

  • Gulcin I, Oktay M, Kufrevioglu OI et al (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    PubMed  Google Scholar 

  • Hamada N, Ueno T (1987) Depside from an isolated lichen mycobiont. Agric Biol Chem 51:1705–1706

    CAS  Google Scholar 

  • Hamada N, Miyagawa H, Miyawaki H et al (1996) Lichen substances in mycobionts of crustose lichens cultured on media with extra sucrose. Bryologist 99:71–74

    CAS  Google Scholar 

  • Haralsdottir S, Guolaugsdottir E, Ingolfsdottir K et al (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med 70:1098–1100

    Google Scholar 

  • Hauck M, Juergens S-R, Willenbruch K et al (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22

    PubMed  CAS  Google Scholar 

  • Hausen BM, Emde L, Marks V (1993) An investigation of the allergic constituents of Cladonia stellaris (Opiz)Pous&Vezda (silver moss, reindeer moss or reindeer lichen). Contact Derm 28:70–76

    PubMed  CAS  Google Scholar 

  • He H, Bigelis R, Yang HY et al (2005) Lichenicolins A and B, new bisnaphthopyrones from an unidentified lichenicolous fungus, strain LL-RB0668. J Antibiot 58:731–736

    PubMed  CAS  Google Scholar 

  • Heber U, Bilger W, Bligny R et al (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis and photoreactions. Planta 211:770–780

    PubMed  CAS  Google Scholar 

  • Hidalgo ME, Bascunan L, Quilhot W et al (2005) Spectroscopic and photochemical properties of the lichen compound lobaric acid. Photochem Photobiol 81:1447–1449

    PubMed  CAS  Google Scholar 

  • Hirayama T, Fujikawa F, Kasahara T et al (1980) Anti-tumor activities of some lichen products and their degradation products. Yakugaku Zasshi 100:755–759

    PubMed  CAS  Google Scholar 

  • Horhant D, Le Lamer AC, Boustie J et al (2007) Separation of a mixture of paraconic acids from Cetraria islandica (L.) Ach. employing a fluorous tag-catch and release strategy. Tetrahedron Lett 48:6031–6033

    CAS  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    PubMed  CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of Lichen substances. Springer, Berlin, p 493

  • Iacomini M, Schneider CL, Gorin PAJ (1985) Comparative studies on the polysaccharides of Cladonia alpestris (reindeer moss), Cladonia confusa and Cladonia amaurocraea. Carbohydr Res 142:237–251

    CAS  Google Scholar 

  • Ingolfsdottir K (2000) Bioactive compounds in Iceland moss. In: Paulsen BS (ed) Bioactive carbohydrate polymers, vol 44. Kluwer Academic Publishers, Dordrecht, pp 25–36

  • Ingolfsdottir K (2002) Molecules of interest – usnic acid. Phytochemistry 61:729–736

    PubMed  CAS  Google Scholar 

  • Ingolfsdottir K, Gudmundsdottir GF (2002) Effects of tenuiorin and methyl orsellinate from the lichen Peltigera leucophlebia on 5-/15-lipoxygenases and proliferation of malignant cell lines in vitro. Phytomedicine 9:654–658

    PubMed  CAS  Google Scholar 

  • Ingolfsdottir K, Bloomfield SF, Hylands PJ (1985) In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives. Antimicrobial Agents Chem 28:289–292

    CAS  Google Scholar 

  • Ingolfsdottir K, Breu W, Huneck S et al (1994a) In vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetraria islandica. Phytomedicine 1:187–191

    CAS  Google Scholar 

  • Ingolfsdottir K, Jurcic K, Fischer B et al (1994b) Immunologically active polysaccharide from Cetraria islandica. Planta Med 60:527–531

    PubMed  CAS  Google Scholar 

  • Ingolfsdottir K, Gissurarson SR, Müller-Jakic B, Breu W, Wagner H (1996) Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in vitro. Phytomedicine 2(3):243–246

    CAS  Google Scholar 

  • Ingolfsdottir K, Gissurarson SR, Nenninger A et al (1997a) Biologically active alkamide from the lichen Stereocaulon alpinum. Phytomedicine 4:331–334

    CAS  Google Scholar 

  • Ingolfsdottir K, Hjalmarsdottir K, Sigurdsson MA et al (1997b) In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from the lichen Cetraria islandica. Antimicrobial Agents Chem 41:215–217

    CAS  Google Scholar 

  • Ingolfsdottir K, Wiedemann B, Birgisdottir M et al (1997c) Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro. Phytomedicine 4:125–128

    CAS  Google Scholar 

  • Ingolfsdottir K, Chung GA, Skulason VG et al (1998) Antimycobacterial activity of lichen metabolites in vitro. Eur J Pharm Soc 6:141–1444

    CAS  Google Scholar 

  • Ivanova V, Schlegel R, Grafe U (2000) 2-Methoxy-4, 5, 7-trihydroxy-anthraquinone, a new lichen metabolite produced by Xanthoria parietina. Pharmazie 55:785–786

    PubMed  CAS  Google Scholar 

  • Ivanova V, Aleksieva K, Kolarova M et al (2002) Neuropogonines A, B and C, new depsidon-type metabolites from Neuropogon sp., an antarctic lichen. Pharmazie 57:73–74

    PubMed  CAS  Google Scholar 

  • Kim J-W, Song K-S, Yoo I-D et al (1996) Two phenolic compounds isolated from Umbilicaria esculenta as phospholipase A2 inhibitors. Han’guk Kyunhakhoechi 24:237–242

    CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M et al (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci 102:3141–3146

    PubMed  CAS  Google Scholar 

  • Kristmundsdottir T, Aradottir HA, Ingolfdottir K et al (2002) Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture. Pharm Pharmacol 54:1447–1452

    CAS  Google Scholar 

  • Kumar S, Muller K (1999) Lichen metabolites. II. Antiproliferative and cytotoxic activity of gyrophoric, usnic and diffractaic acid on human keratinocyte growth. J Nat Prod 62:821–823

    PubMed  CAS  Google Scholar 

  • Kupchan S, Kopperman H (1975) Usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625

    PubMed  CAS  Google Scholar 

  • Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:81–120

    Google Scholar 

  • Leuckert C, Buschardt A, Hertel H (1981) Die Verteilung der Chemotypen von Dimelaena oreina (Lichenes) auf verschiedene Hohenstufen an einem Transekt im Vinschagau (Sudtirol, Italien). Nova Hedwigia 34:623–631

    Google Scholar 

  • Leuckert C, Ahmadjian V, Culberson CF et al (1990) Xanthones and depsidones of the lichen Lecanora dispersa in nature and of its mycobiont in culture. Mycologia 82:370–378

    CAS  Google Scholar 

  • Lin X, Cai Y-G, Li Z-X et al (2003) Structure determination, apoptosis induction and telomerase inhibition of CFP-2, a novel lichenin from Cladonia furcata. Biochem Biophys Acta 1622:99–108

    PubMed  CAS  Google Scholar 

  • Lohézic-Le Dévéhat F, Tomasi S, Bernard A et al (2007) Stictic acid derivatives from the lichen Usnea articulata L. and their antioxidant activities. J Nat Prod 70:1218–1220

    PubMed  Google Scholar 

  • Lopes TIB, Coelho RG, Yoshida NC et al (2008) Radical-scavenging activity of Orsellinates. Chem Pharm Bull 56:1551–1554

    PubMed  CAS  Google Scholar 

  • Magarvey NA, Beck ZQ, Golakoti T et al (2006) Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chem Biol 1:766–779

    PubMed  CAS  Google Scholar 

  • Manojlovic NT, Solujic S, Sukdolak S et al (1998) Anthraquinones from the lichen Xanthoria parietina. J Serb Chem Soc 63:7–11

    CAS  Google Scholar 

  • Margesin R, Jud M, Tscherko D et al (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218

    PubMed  CAS  Google Scholar 

  • Mayer M, O’Neill MA, Murray KE et al (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16:805–809

    PubMed  CAS  Google Scholar 

  • Micheletti AC, Beatriz A, de Lima DP et al (2009) Constituintes químicos de Parmotrema lichexanthonicum Eliasaro & Adler—isolamento, modificações estruturais e avaliação das atividades antibiótica e citotóxica. Quim Nova 32:12–20

    CAS  Google Scholar 

  • Min T-J, Bae K-G (1996) Structure and antibiotic activities of phenolic compounds from Umbilicaria vellea. Kor J Chem Soc 40(9):623–629

    CAS  Google Scholar 

  • Molina MC, Crespo A, Vicente C et al (2003) Differences in the composition of phenolics and fatty acids of cultured mycobiont and thallus of Physconia distorta. Plant Physiol Biochem 41:175–180

    CAS  Google Scholar 

  • Morita H, Tsuchiya T, Kishibe K et al (2009) Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulon sasakii. Bioorg Med Chem Lett 19:3679–3681

    PubMed  CAS  Google Scholar 

  • Motohashi K, Takagi M, Yamamura H, Hayakawa M, Shin-ya K (2010) A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J Antibiot 63:545–548

    PubMed  CAS  Google Scholar 

  • Muggia L, Schmitt I, Grube M (2009) Lichens as treasure chests of natural products. Sim News 59:85–97

    Google Scholar 

  • Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    PubMed  CAS  Google Scholar 

  • Neff GW, Reddy KR, Durazo FA et al (2004) Severe hepatotoxicity associated with the use of weight loss diet supplements containing ma huang or usnic acid. J Hepatol 41:1062–1064

    PubMed  Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718

    PubMed  CAS  Google Scholar 

  • Nimis PL, Skert N (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ Exp Bot 55:175–182

    CAS  Google Scholar 

  • Nishikawa Y, Ohno H (1981) Studies on the water-soluble constituents of lichens. IV. Effect of the antitumor lichen-glucans and related derivatives on the phagocytic activity of the reticuloendothelial system in mice. Chem Pharm Bull 29:3407–3410

    PubMed  CAS  Google Scholar 

  • Nishikawa Y, Takeda T, Shibata S et al (1969) Polysaccharides in lichens anf fungi. III. Further investigation on the structures and the antitumor activity of the polysaccharides from Gyrophora esculenta Miyoshi and Lasallia papulosa Llano. Chem Pharm Bull 17:1910–1916

    PubMed  CAS  Google Scholar 

  • Nolan TJ, Algar J, McCann EP et al (1948) Chemical constituents of lichens found in Ireland Buellia canescens. III. Constitution of diploicin. Sci Proc R Dublin Soc 24A:319–334

    Google Scholar 

  • Nybakken L, Solhaug KA, Bilger W et al (2004) The lichens Xantoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecol 140:211–216

    Google Scholar 

  • Odabasoglu F, Aslan A, Cakir A et al (2005) Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia 76:216–219

    PubMed  CAS  Google Scholar 

  • Ogmundsdottir HM, Zoega GM, Gissurarson SR et al (1998) Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol 50:107–115

    PubMed  CAS  Google Scholar 

  • Oksanen I (2006) Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734

    PubMed  CAS  Google Scholar 

  • Oksanen I, Jokela J, Fewer DP et al (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Ingolfdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67:199–208

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Omarsdottir S, Smestad Paulsen B et al (1999) Rhamnopyranogalactofuranan, a new immunologically active polysaccharide from Thamnolia subuliformis. Phytomedicine 6:273–279

    PubMed  CAS  Google Scholar 

  • Olafsdottir ES, Omarsdottir S, Paulsen BS et al (2003) Immunologically active O6-branched (1–3)-b-glucan from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine 10:318–324

    PubMed  CAS  Google Scholar 

  • Omarsdottir S, Olafsdottir ES, Freysdottir J (2006a) Immunomodulating effects of lichen-derived polysaccharides on monocytes-derived dentritic cells. Int Immunopharmacol 6:1642–1650

    PubMed  CAS  Google Scholar 

  • Omarsdottir S, Petersen H, Barsett H et al (2006b) Structural characterisation of a highly branched galactomannan from the lichen Peltigera canina by methylation analysis and NMR-spectroscopy. Carbohydr Polym 63:54–60

    CAS  Google Scholar 

  • Omarsdottir S, Freysdottir J, Olafsdottir ES (2007) Immunomodulating polysaccharides from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine 14:179–184

    PubMed  CAS  Google Scholar 

  • Paudel B, Bhattarai HD, Lee HG et al (2008) Antibacterial potential of Antarctic lichens against human pathogenic gram-positive bacteria. Phytother Res 22:1269–1271

    PubMed  CAS  Google Scholar 

  • Pengsuparp T, Cai L, Constant H et al (1995) Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prod 58:1024–1031

    PubMed  CAS  Google Scholar 

  • Piovano M, Garbarino JA, Giannini FA et al (2002) Evaluation of antifungal and antibacterial activities of aromatic metabolites from lichens. Bol Soc Chil Quim 47:235–240

    CAS  Google Scholar 

  • Podterob AP (2008) Chemical composition of lichens and their medical application. Pharm Chem J 42:582–588

    CAS  Google Scholar 

  • Rancan F, Rosan S, Boehm K et al (2002) Protection against UVB irradiation by natural filters extracted from lichens. J Photochem Photobiol B 68:133–139

    PubMed  CAS  Google Scholar 

  • Rankovic B, Misic M, Sukdolak S (2007) Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica. Microbiol 76:723–727

    CAS  Google Scholar 

  • Reddy VM, O’Sullivan JF, Gangadharam PR (1999) Antimycobacterial activities of riminophenazines. J Antimicrob Chemother 43:616–623

    Google Scholar 

  • Rezanka T, Dembitsky V (1999) Novel brominated lipidic compounds from lichens of central Asia. Phytochemistry 51:963–968

    PubMed  CAS  Google Scholar 

  • Rezanka T, Guschina IA (2000) Glycosidic compounds of murolic, protoconstipatic and allo-murolic acids from lichens of central Asia. Phytochemistry 54:635–645

    PubMed  CAS  Google Scholar 

  • Rezanka T, Guschina IA (2001) Macrolactone glycosides of three lichen acids from Acarospora gobiensis, a lichen of central Asia. Phytochemistry 58:1281–1287

    PubMed  CAS  Google Scholar 

  • Riedel K, Boustie J, Eberl L et al (2008) Effect of lichen secondary metabolites on bacterial functions and biofilm formation. Planta Med 74:960

    Google Scholar 

  • Rubio C, Fernandez E, Hidalgo ME et al (2002) Effects of solar UV-B radiation in the accumulation of rhizocarpic acid in a lichen species from alpine zones of Chile. Bol Soc Chil Quim 47:213–217

    Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU145 cells. Anticancer Drugs 17:1163–1169

    PubMed  CAS  Google Scholar 

  • Russo A, Piovano M, Lombardo L et al (2008) Lichen metabolites prevent UV light and nitric-oxide mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    PubMed  CAS  Google Scholar 

  • Sankawa U, Shibuya M, Ebizuka Y et al (1982) Depside as potent inhibitor of prostaglandin biosynthesis: a new active site model for fatty acid cyclooxygenase. Prostaglandins 24:21–34

    PubMed  CAS  Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B et al (2008) A new antifungal and antiprotozoal depside from the Andean Lichen Protousnea poeppigii. Phytother Res 22:349–355

    PubMed  CAS  Google Scholar 

  • Schmitt I, Kautz S, Lumbsch HT (2008) 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res 112:289–296

    PubMed  CAS  Google Scholar 

  • Seephonkai P, Isaka M, Kittakoop P et al (2002) Evaluation of antimycobacterial, antiplasmodial and cytotoxic activities of preussomerins isolated from the lichenicolous fungus Microsphaeropsis sp. BCC 3050. Planta Med 68:45–48

    PubMed  CAS  Google Scholar 

  • Selbmann L, Zucconi L, Ruisi S et al (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83

    Google Scholar 

  • Seo C, Sohn JH, Park SM et al (2008a) Usimines A-C, bioactive usnic acid derivatives from the Antarctic Lichen Stereocaulon alpinum. J Nat Prod 71:710–712

    PubMed  CAS  Google Scholar 

  • Seo C, Yim JH, Lee HK et al (2008b) Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett 49:29–31

    CAS  Google Scholar 

  • Seo C, Sohn JH, Ahn JS et al (2009) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803

    PubMed  CAS  Google Scholar 

  • Singh J, Upreti DK, Bajpai R et al (2008) Effect of altitudinal changes on photosynthetic pigment concentration in some cryptogams. J Ecophys Occup Health 8:107–110

    CAS  Google Scholar 

  • Smestad Paulsen B, Olafsdottir ES, Ingolfdottir K (2002) Chromatography and electrophoresis in separation and characterization of polysaccharides from lichens. J Chromatogr A 967:163–171

    Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in arctic subglacial ice. Microb Ecol 52:207–216

    PubMed  Google Scholar 

  • Stepanenko LS, Krivoshchekova OE, Skirina IF (2002) Functions of phenolic secondary metabolites in lichens from far east Russia. Symbiosis 32:119–131

    CAS  Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    PubMed  Google Scholar 

  • Stocker-Wörgotter E, Elix JA (2006) Morphogenetic strategies and induction of secondary metabolite biosynthesis in cultured lichen-forming Ascomycota, as exemplified by Cladia retipora (Labill.) Nyl. and Dactylina arctica (Richards) Nyl. Symbiosis 41:9–20

    Google Scholar 

  • Sundset MA, Kohn A, Mathiesen SD et al (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749

    PubMed  CAS  Google Scholar 

  • Takahashi K, Kinoshita K, Yamamoto Y et al (2005) Chemical constituents from lichens for pharmaceutical and industrial uses. Folia Cryptogam Est 41:109–114

    Google Scholar 

  • Takai M, Uehara Y, Beisler JA (1979) Usnic acid derivatives as potential antineoplastic agents. J Med Chem 22:1380–1384

    PubMed  CAS  Google Scholar 

  • Thune PO, Solberg PO (1980) Photosensitivity and allergy to aromatic lichen acids, compositae oeoresins and other plant substances. Contact Derm 6:64–71

    PubMed  CAS  Google Scholar 

  • Tomasi S, Picard S, Lainé C et al (2006) A solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound. J Comb Chem 8:11–14

    PubMed  CAS  Google Scholar 

  • Torres A, Hochberg M, Pergament I et al (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur J Biochem 271:780–784

    PubMed  CAS  Google Scholar 

  • Troll C (1973) High mountain belts between the polar caps and the equator: their definition and lower limit. Arctic Alpine Res 5:19–27

    Google Scholar 

  • Turk OA, Meral Y, Merih K et al (2003) The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Z Naturforsch C 58:850–854

    PubMed  Google Scholar 

  • Vegar Storeheier P, Mathiesen SD, Tyler NJC et al (2002) Nutritive value of terricolous lichens for reindeer in winter. Lichenologist 34:247–257

    Google Scholar 

  • Weerapreeyakul N, Anorach R, Khuansawad T et al (2007) Synthesis of bioreductive esters from fungal compounds. Chem Pharm Bull 55:930–935

    PubMed  CAS  Google Scholar 

  • Weissman L, Garty J, Hochman A (2005a) Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microbiol 71:6508–6514

    PubMed  CAS  Google Scholar 

  • Weissman L, Garty J, Hochman A (2005b) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microbiol 71:2121–2129

    PubMed  CAS  Google Scholar 

  • Williams DE, Davies J, Patrick BO et al (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504

    PubMed  CAS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Adaptation of the lichen Rhizocarpon geographicum to harsh high-altitude conditions: relevance to a habitable Mars. Planet Space Sci 48:1065–1075

    CAS  Google Scholar 

  • Yamamoto Y, Mizuguchi R, Takayama S et al (1987) Effects of culture conditions on the growth of Usneaceae lichen tissue cultures. Plant Cell Physiol 28:1421–1426

    CAS  Google Scholar 

  • Yamamoto Y, Miura Y, Kinoshita Y et al (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chem Pharm Bull 43:1388–1390

    PubMed  CAS  Google Scholar 

  • Yang X, Shimiazu Y, Steiner JR et al (1993) Nostoclide I and II, extracellular metabolites from a symbiotic cyanobacterium, Nostoc sp., from the lichen Peltigera canina. Tetrahedron Lett 34:761–764

    CAS  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Juliette Asta, University of Grenoble for very useful documentation and suggestion to visit http://jlcheype.free.fr/classification/Lichens/Lichens.htm, for alpine mushrooms and lichens pictures, thanking Jean-Louis Cheype for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Tomasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boustie, J., Tomasi, S. & Grube, M. Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10, 287–307 (2011). https://doi.org/10.1007/s11101-010-9201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9201-1

Keywords

Navigation