Skip to main content
Log in

Role of hydroxycinnamates in coffee melanoidin formation

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Melanoidins are the high molecular weight brown end products of the Maillard reaction. They are formed during heat processing of foods like coffee, bread, malt, and beef. A chemical definition of these food polymers is still impossible, despite several efforts to determine their structure. In the last years, the interest in research on melanoidins has increased due to their biological activities. Coffee brew is one of the main sources of melanoidins in human diet. Various melanoidin fractions were obtained by applying chromatographic separation techniques or specific isolation procedures, allowing, a partial view on structural features and diversity of coffee brew melanoidins. Different melanoidin populations can be found with respect to total carbohydrate contents and their structural features. In this paper, the recent advances in research on coffee melanoidin structures and formation mechanisms are reviewed. The participation of hydroxycinnamates in melanoidin formation, especially true for coffee melanoidins, is a hypothesis older than three decades, but only recently more consistent data have been obtained for their presence. Although the role of hydroxycinnamates in melanoidin formation is not yet completely understood, it was demonstrated that the interaction between phenolic compounds and melanoidins can be of non-covalent or of covalent nature. The most likely linkage point is through the protein fragments incorporated in the coffee melanoidin during the roasting process, although carbohydrates, such as arabinose, seem to be possible binding sites for the chlorogenic acid derivatives on these brown structures, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams A, Borrelli RC, Fogliano V, De Kimpe N (2005) Thermal degradation studies of food melanoidins. J Agric Food Chem 53:4136–4142

    CAS  PubMed  Google Scholar 

  • Ames JM, Caemmerer B, Velisek J, Cejpek K, Obretenov C, Cioroi M (1999a) The nature of melanoidins and their investigation. In: Ames JM (ed) Melanoidins in food and health. COST Action 919, vol 1. European Communities, Luxembourg

    Google Scholar 

  • Ames JM, Wynne A, Hofmann A, Plos S, Gibson GR (1999b) The effect of a model melanoidin mixture on faecal bacterial populations in vitro. Br J Nutr 82:489–495

    CAS  PubMed  Google Scholar 

  • Batistic L, Mayaudon J (1970) Étude chromatographic des acides phénoliques et des phenols obtenus par la fusion alcaline des acides humiques. Plant Soil 33:473–477

    CAS  Google Scholar 

  • Bedinghaus AJ, Ockerman HW (1995) Antioxidative Maillard reaction products from reducing sugars and free amino acids in cooked ground pork patties. J Food Sci 60:992–995

    CAS  Google Scholar 

  • Bekedam EK, Schols HA, van Boekel MA, Smit G (2006) High molecular weight melanoidins from coffee brew. J Agric Food Chem 54:7658–7666

    CAS  PubMed  Google Scholar 

  • Bekedam EK, De Laat MP, Schols HA, van Boekel MA, Smit G (2007) Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins. J Agric Food Chem 55:761–768

    CAS  PubMed  Google Scholar 

  • Bekedam EK, Schols HA, van Boekel MA, Smit G (2008a) Incorporation of chlorogenic acids in coffee brew melanoidins. J Agric Food Chem 56:2055–2063

    CAS  PubMed  Google Scholar 

  • Bekedam EK, Loots MJ, Schols HA, van Boekel MA, Smit G (2008b) Roasting effects on formation mechanisms of coffee brew melanoidins. J Agric Food Chem 56:7138–7145

    CAS  PubMed  Google Scholar 

  • Borrelli RC, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49:673–678

    CAS  PubMed  Google Scholar 

  • Borrelli RC, Fogliano V, Monti SM, Ames JM (2002a) Characterization of melanoidins from a glucose-glycine model system. Eur Food Res Technol 215:210–215

    CAS  Google Scholar 

  • Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V (2002b) Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem 50:6527–6533

    CAS  PubMed  Google Scholar 

  • Cämmerer B, Kroh LW (1995) Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chem 53:55–59

    Google Scholar 

  • Cämmerer B, Jalyschko W, Kroh LW (2002) Intact carbohydrate structures as part of the melanoidin skeleton. J Agric Food Chem 50:2083–2087

    PubMed  Google Scholar 

  • Casal S, Mendes E, Oliveira MBPP, Ferreira MA (2005) Roast effects on coffee amino acid enantiomers. Food Chem 89:333–340

    CAS  Google Scholar 

  • Cheynier VF, Trousdale EK, Singleton VL, Salgues J, Wylde R (1986) Characterization of 2-S-glutathionylcaftaric acid and its hydrolysis in relation to grape wines. J Agric Food Chem 34:217–221

    CAS  Google Scholar 

  • Cilliers JL, Singleton VL (1989) Nonenzymic autoxidative phenolic browning reactions in a caffeic acid model system. J Agric Food Chem 37:890–896

    CAS  Google Scholar 

  • Cilliers JL, Singleton VL (1991) Characterization of the products of nonenzymic autoxidative phenolic reactions in a caffeic acid model system. J Agric Food Chem 39:1298–1303

    CAS  Google Scholar 

  • Cioroi M (2000) The antioxidant character of melanoidins. Czech J Food Sci 18:103–105

    CAS  Google Scholar 

  • Clifford MN (1985) Chlorogenic acids. In: Clarke RJ, Macrae R (eds) Coffee I. Chemistry, Elsevier Applied Science, London

    Google Scholar 

  • Clifford MN (2002) Chlorogenic acids and other cinnamates—nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Google Scholar 

  • D’Agostina A, Boschin G, Bacchini F, Arnoldi A (2004) Investigations on the high molecular weight foaming fractions of espresso coffee. J Agric Food Chem 52:7118–7125

    PubMed  Google Scholar 

  • Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee. J Agric Food Chem 42:2270–2272

    CAS  Google Scholar 

  • Daglia M, Papetti A, Gregotti C, Berte F, Gazzani G (2000) In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J Agric Food Chem 48:1449–1454

    CAS  PubMed  Google Scholar 

  • Daglia M, Tarsi R, Papetti A, Grisoli P, Dacarro C, Pruzzo C, Gazzani G (2002) Antiadhesive effect of green and roasted coffee on Streptococcus mutans’ adhesive properties on saliva coated hydroxyapatite beads. J Agric Food Chem 50:1225–1229

    CAS  PubMed  Google Scholar 

  • Delgado-Andrade C, Morales FJ (2005) Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J Agric Food Chem 53:1403–1407

    CAS  PubMed  Google Scholar 

  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2005) Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J Agric Food Chem 53:7832–7836

    CAS  PubMed  Google Scholar 

  • Dell’Aquila C, Ames JM, Gibson GR, Wynne AG (2003) Fermentation of heated gluten systems by gut microflora. Eur Food Res Technol 217:382–386

    Google Scholar 

  • Erbersdobler HF, Somoza V (2007) Forty years of furosine—forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Mol Nutr Food Res 51:423–430

    CAS  PubMed  Google Scholar 

  • Esposito F, Morisco F, Verde V, Ritieni A, Alezio A, Caporaso N, Fogliano V (2003) Moderate coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol Ther 17:595–601

    CAS  PubMed  Google Scholar 

  • Faist V, Krome K, Ames J, Erbersdobler HF (2001) Effects of non-enzymatic browning products formed by roasting of glucose/glycine- and glucose/casein-mixtures on NADPH Cytochrome c-reductase and glutathione-S-transferase in Caco-2 Cells. In: Ames JM (ed) Melanoidins in food and health. COST Action 919, vol 2. European Communities, Luxembourg

    Google Scholar 

  • Faist V, Lindenmeier M, Geisler C, Erbersdobler HF, Hofmann T (2002) Influence of molecular weight fractions isolated from roasted malt on the enzyme activities of NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells. J Agric Food Chem 50:602–606

    CAS  PubMed  Google Scholar 

  • Feldman RS, Ryder WS, Kung JT (1969) Importance of nonvolatile compounds to the flavor of coffee. J Agric Food Chem 17:733–739

    CAS  Google Scholar 

  • Fiddler W, Parker WE, Wasserman AE, Doerr RC (1967) Thermal decomposition of ferulic acid. J Agric Food Chem 15:757–761

    CAS  Google Scholar 

  • Frank O, Blumberg S, Kunert C, Zehentbauer G, Hofmann T (2007) Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS. J Agric Food Chem 55:1945–1954

    CAS  PubMed  Google Scholar 

  • Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653

    CAS  Google Scholar 

  • Gniechwitz D, Reichardt N, Meiss E, Ralph J, Steinhart H, Blaut M, Bunzel M (2008a) Characterization and fermentability of an ethanol soluble high molecular weight coffee fraction. J Agric Food Chem 56:5960–5969

    CAS  PubMed  Google Scholar 

  • Gniechwitz D, Reichardt N, Ralph J, Blaut M, Steinhart H, Bunzel M (2008b) Isolation and characterisation of a coffee melanoidin fraction. J Sci Food Agric 88:2153–2160

    CAS  Google Scholar 

  • Hagerman AE (1992) Phenolic compounds in food and their effect on health I—analysis, occurrence and chemistry. In: Ho P, Lee YC, Huang M-T (eds) ACS symposium series 506. American Chemical Society, Washington, DC, pp 237–247

  • Hashiba H (1973) Non-enzymatic browning of soy sauce—use of an ion-exchange resin to identify types of compounds involved in oxidative browning. Agric Biol Chem 37:871–877

    CAS  Google Scholar 

  • Henle T, Schwarzenbolz U, Walter AW, Klostermeyer H (1998) Protein-bound Maillard compounds in foods: analytical and technological aspects. In: O’Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in food and medicine. Royal Society of Chemistry, London

    Google Scholar 

  • Henrich L, Baltes W (1987) Occurrence of phenols in coffee melanoidins. Z Lebensm Unters Forsch A 185:366–370

    Google Scholar 

  • Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347

    CAS  PubMed  Google Scholar 

  • Heyns K, Hauber R (1970) Determination of structure of specific C-14 labeled brown polymerisates of sorbose by thermal fragmentations. Justus Liebigs Ann Chem 733:159–169

    CAS  Google Scholar 

  • Hiramoto S, Itoh K, Shizuuchi S, Kawachi Y, Morishita Y, Nagase M, Suzuki Y, Nobuta Y, Sudou Y, Nakamura O, Kagaya I, Goshima H, Kodama Y, Icatro FC, Koizumi W, Saigenji K, Miura S, Sugiyama T, Kimura N (2004) Melanoidin, a food protein-derived advanced maillard reaction product, suppresses Helicobacter pylori in vitro and in vivo. Helicobacter 9:429–435

    CAS  PubMed  Google Scholar 

  • Hofmann T (1998a) Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques. J Agric Food Chem 46:3891–3895

    CAS  Google Scholar 

  • Hofmann T (1998b) Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde—chemical characterisation of a red coloured domain. Eur Food Res Technol 206:251–258

    CAS  Google Scholar 

  • Hofmann T (1999) Isolation, separation and structure determination of melanoidins. In: Ames JM (ed) Melanoidins in food and health. COST Action 919, vol 1. European Communities, Luxembourg

    Google Scholar 

  • Hofmann T, Bors W, Stettmaier K (1999a) Radical-assisted melanoidin formation during thermal processing of foods as well as under physiological conditions. J Agric Food Chem 47:391–396

    CAS  PubMed  Google Scholar 

  • Hofmann T, Bors W, Stettmaier K (1999b) Studies on radical intermediates in the early stage of the nonenzymatic browning reaction of carbohydrates and amino acids. J Agric Food Chem 47:379–390

    CAS  PubMed  Google Scholar 

  • Hofmann T, Ames J, Krome K, Faist V (2001) Determination of the molecular weight distribution of non-enzymatic browning products formed by roasting of glucose and glycine and studies on their effects on NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells. Nahrung/Food 45:189–194

    CAS  Google Scholar 

  • Homma S, Tomura T, Fujimaki M (1982) Fractionation of nondialyzable melanoidin into components by electrofocusing electrophoresis. Agric Biol Chem 46:1791–1796

    CAS  Google Scholar 

  • Homma S, Terasawa N, Kubo T, Yoneyama-Ishii N, Aida K, Fujimaki M (1997) Changes in chemical properties of melanoidin by oxidation and reduction. Biosci Biotechnol Biochem 61:533–535

    CAS  Google Scholar 

  • Kato H, Tsuchida H (1981) Estimation of melanoidin structure by pyrolysis and oxidation. Prog Food Nutr Sci 5:147–156

    CAS  Google Scholar 

  • Kato H, Kim SB, Hayase F, Van Chuyen NV (1985) Desmutagenicity of melanoidins against mutagenic pyrolysates. Agric Biol Chem 49:3093–3095

    CAS  Google Scholar 

  • Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51:1333–1338

    CAS  Google Scholar 

  • Kishimoto N, Kakino Y, Iwai K, Fujita T (2005) Chlorogenate hydrolase-catalyzed synthesis of hydroxycinnamic acid ester derivatives by transesterification, substitution of bromine, and condensation reactions. Appl Microbiol Biotechnol 68:198–202

    CAS  PubMed  Google Scholar 

  • Klöcking R, Hofmann R, Mücke D (1971) Substances of the humic acid type ocurring in extracts of roasted coffee. 3. Detection of phenols in hydrolysates of humic acids from coffee. Z Lebensm Unters Forsch 146:79–83

    Google Scholar 

  • Kroll J, Rawel HM, Rohn S (2003) Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Sci Tech Res 9:205–218

    CAS  Google Scholar 

  • Kuntcheva MJ, Obretenov TD (1996) Isolation and characterization of melanoidins from beer. Z Lebensm Unters Forsch 202:238–243

    CAS  Google Scholar 

  • Ledl F, Schleider E (1990) New aspects of the maillard reaction in foods and in the human body. Angew Chem Int Ed Engl 29:565–594

    Google Scholar 

  • Lee IE, Chuyen NV, Hayase F, Kato H (1994) Desmutagenicity of melanoidins against various kinds of mutagens and activated mutagens. Biosci Biotechnol Biochem 58:21–23

    Google Scholar 

  • Lindenmeier M, Faist V, Hofmann T (2002) Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J Agric Food Chem 50:6997–7006

    CAS  PubMed  Google Scholar 

  • Maier HGE, Buttle H (1973) Isolation and characterization of brown roast compounds of coffee. 2. Z Lebensm Unters Forsch A 150:331–334

    CAS  Google Scholar 

  • Maier HG, Dietmair W, Ganssman J (1968) Isolation and characterization of brown roast compounds of coffee. Z Lebensm Unters Forsch A 137:282–292

    CAS  Google Scholar 

  • Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2001) Review of nonenzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Technol 11:340–346

    Google Scholar 

  • Martín MA, Ramos S, Mateos R, Henares JA, Morales FJ, Bravo L, Goya L (2009) Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress. J Agric Food Chem 57:7250–7258

    Google Scholar 

  • Martins SIFS, Jongen WMF, van Boekel MAJS (2000) A review of Maillard reaction in food and implications to kinetic modeling. Trends Food Sci Technol 11:364–373

    CAS  Google Scholar 

  • Montavon P, Mauron AF, Duruz E (2003) Changes in green coffee protein profiles during roasting. J Agric Food Chem 51:2335–2343

    CAS  PubMed  Google Scholar 

  • Morales FJ (2002) Application of capillary electrophoresis to the study of food and food-model melanoidins. Food Chem 76:363–369

    CAS  Google Scholar 

  • Morales FJ (2005) Assessing the non-specific hydroxyl radical scavenging properties of melanoidins in a Fenton type reaction system. Anal Chim Acta 534:171–176

    CAS  Google Scholar 

  • Morales FJ, Jimenez-Perez S (2004) Peroxyl radical scavenging activity of melanoidins in aqueous systems. Eur Food Res Technol 218:515–520

    CAS  Google Scholar 

  • Morales FJ, Fernández-Fraguas C, Jiménez-Pérez S (2005) Iron binding ability of melanoidins from food and model systems. Food Chem 90:821–827

    CAS  Google Scholar 

  • Muller C, Lang R, Hofmann T (2006) Quantitative precursor studies on di- and trihydroxybenzene formation during coffee roasting using “in bean” model experiments and stable isotope dilution analysis. J Agric Food Chem 54:10086–10091

    PubMed  Google Scholar 

  • Newhall FW, Ting SV (1967) Degradation of hesperetin and naringenin to phloroglucinol. J Agric Food Chem 15:776–777

    CAS  Google Scholar 

  • Nicoli MC, Anese M, Manzocco L, Lerici CR (1997) Antioxidant properties of coffee brews in relation to the roasting degree. Lebensm Wiss Technol 30:292–297

    CAS  Google Scholar 

  • Nunes FM, Coimbra MA (2001) Chemical characterization of the high molecular weight material extracted with hot water from green and roasted Arabica coffee. J Agric Food Chem 49:1773–1782

    CAS  PubMed  Google Scholar 

  • Nunes FM, Coimbra MA (2002a) Chemical characterization of galactomannans and arabinogalactans from two arabica coffee infusions as affected by the degree of roast. J Agric Food Chem 50:1429–1434

    CAS  PubMed  Google Scholar 

  • Nunes FM, Coimbra MA (2002b) Chemical characterization of the high molecular weight material extracted with hot water from green and roasted robusta coffee as affected by the degree of roast. J Agric Food Chem 50:7046–7052

    CAS  PubMed  Google Scholar 

  • Nunes FM, Coimbra MA (2007) Melanoidins from coffee infusions, fractionation, chemical characterization, and effect of the degree of roast. J Agric Food Chem 55:3967–3977

    CAS  PubMed  Google Scholar 

  • Nunes FM, Reis A, Domingues MRM, Coimbra MA (2006) Characterization of galactomannan derivatives in roasted coffee beverages. J Agric Food Chem 54:3428–3439

    CAS  PubMed  Google Scholar 

  • Nunes FM, Reis A, Silva AMS, Domingues MRM, Coimbra MA (2008) Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains as structural features of co.ee arabinogalactans. Phytochemistry 69:1573–1585

    CAS  PubMed  Google Scholar 

  • Obretenov TD, Ivanova SD, Kuntcheva MJ, Somov GT (1993) Melanoidin formation in cooked meat products. J Agric Food Chem 41:653–656

    CAS  Google Scholar 

  • Okamura S, Watanabe M (1982) Purification and properties of hydroxycinnamic acid ester hydrolase from Aspergillus japonicus. Agric Biol Chem 46:1839–1848

    CAS  Google Scholar 

  • Onishi A, Proudlove MO (1994) Isolation of beer foam polypeptides by hydrophobic interaction chromatography and their partial characterization. J Sci Food Agric 65:233–240

    CAS  Google Scholar 

  • Rawel HM, Rohn S, Kroll J (2005) Characterisation of 11S protein fractions and phenolic compounds from green coffee beans under special consideration of their interactions–a review. Dtsch Lebensm Rundsch 101:148–160

    CAS  Google Scholar 

  • Redgwell RJ, Curti D, Fischer M, Nicola P, Fay L (2002a) Coffee arabinogalactans: acidic polysaccharides covalently linked to proteins. Carbohydr Res 337:239–253

    CAS  PubMed  Google Scholar 

  • Redgwell RJ, Trovato V, Curti D, Fischer M (2002b) Effect of roasting on degradation and structural features of polysaccharides in Arabica coffee beans. Carbohydr Res 337:421–431

    CAS  PubMed  Google Scholar 

  • Rendleman JA (1987) Complexation of calcium by melanoidin and its role in determining bioavailability. J Food Sci 52:1699–1705

    CAS  Google Scholar 

  • Rizzi GP (1997) Chemical structure of colored Maillard reaction products. Food Rev Int 13:1–28

    CAS  Google Scholar 

  • Rizzi GP, Boekley LJ (1992) Observation of ether linked phenolic products during thermal degradation of ferulic acid in the presence of alcohols. J Agric Food Chem 40:1666–1670

    CAS  Google Scholar 

  • Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chem 66:401–436

    CAS  Google Scholar 

  • Rufián-Henares JA, Morales F (2006) A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products. Food Res Int 39:33–39

    Google Scholar 

  • Rufián-Henares JA, Morales FJ (2007a) Functional properties of melanoidins: in vitro antioxidant, antimicrobial and antihypertensive activities. Food Res Int 40:995–1002

    Google Scholar 

  • Rufián-Henares JA, Morales F (2007b) Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J Agric Food Chem 55:1480–1485

    PubMed  Google Scholar 

  • Salgues M, Cheynier V, Gunata Z, Wylde R (1986) Oxidation of grape juice 2-S-glutathiolyl caffeoyl tartaric acid by Botrytis cinerea laccase and characterization of a new substance: 2, 5-di-S-glutathionyl caffeoyl tartaric acid. J Food Sci 51:1191–1194

    CAS  Google Scholar 

  • Sharma RK, Fisher TS, Hajaligol MR (2002) Effect of reaction conditions on pyrolysis of chlorogenic acid. J Anal Appl Pyrol 62:281–296

    CAS  Google Scholar 

  • Solyakov A, Skog K, Jegerstad M (2002) Binding of mutagenic/carcinogenic heterocyclic amines to MRPs under stimulated gastrointestinal conditions. In: Fogliano V, Henle T (eds) Melanoidins in food and health. COST Action 919, vol 3. European Communities, Luxembourg

  • Stadler RH, Welti DH, Stämpfli AA, Fay LB (1996) Thermal decomposition of caffeic acid in model systems: identification of novel tetraoxygenated phenylindan isomers and their stability in aqueous solution. J Agric Food Chem 44:898–905

    CAS  Google Scholar 

  • Stecchini ML, Giavedoni P, Sarais I, Lerici CR (1991) Effect of Maillard reaction products on the growth of selected food-poisoning microorganisms. Lett Appl Microbiol 13:93–96

    Google Scholar 

  • Steinhart H, Packert A (1993) Melanoidins in coffee. Separation and characterization by different chromatographic procedures. In: Proceedings of the 15th ASIC Colloquium. Montpellier, France

  • Steinhart H, Möller A, Kletschkus H (1989) New aspects in the analysis of melanoidins in coffee with liquid chromatography. In: Proceedings of the 13th ASIC colloquium, Paris, France

  • Steinhart H, Luger A, Piost J (2001) Antioxidative effect of coffee melanoidins In: Proceedings of the 19th ASIC colloquium, Trieste, Italy

  • Takenaka M, Sato N, Asakawa H, Wen X, Murata M, Homma S (2005) Characterization of a metal-chelating substance in coffee. Biosci Biotechnol Biochem 69:26–30

    CAS  PubMed  Google Scholar 

  • Terasawa N, Murata M, Homma S (1991) Separation of model melanoidin into components with copper chelating Sepharose-6B column chromatography and comparison of chelating activity. Agric Biol Chem 55:1507–1514

    CAS  Google Scholar 

  • Terasawa N, Murata M, Homma S (1996) Comparison of brown pigments in food by microbial descolorization. J Food Sci 61:669–672

    CAS  Google Scholar 

  • Totlani VM, Peterson DG (2007) Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems. J Agric Food Chem 55:414–420

    CAS  PubMed  Google Scholar 

  • Tressl R, Wondrak GT, Krüger R-P, Rewicki D (1998a) New melanoidin-like Maillard-polymers from 2-deoxypentoses. J Agric Food Chem 46:104–110

    CAS  PubMed  Google Scholar 

  • Tressl R, Wondrak GT, Garbe LA, Kruger RP, Rewicki D (1998b) Pentoses and hexoses as sources of new melanoidin-like Maillard polymers. J Agric Food Chem 46:1765–1776

    CAS  Google Scholar 

  • Wagner K-H, Derkits S, Herr M, Schuh W, Elmadfa I (2002) Antioxidative potential of melanoidins isolated from a roasted glucose-glycine model. Food Chem 78:375–382

    CAS  Google Scholar 

  • Waterhouse AL (2001) Determination of total phenolics. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, Inc

    Google Scholar 

  • Wenzel E, Tasto S, Erbersdobler HF, Faist V (2002) Effect of heat-treated proteins on selected parameters of the biotransformation system in the rat. Ann Nutr Metab 46:9–16

    CAS  PubMed  Google Scholar 

  • Wijewickreme AN, Kitts D (1997) Influence of reaction conditions on the oxidative behavior of model Maillard reaction products. J Agric Food Chem 45:4571–4576

    CAS  Google Scholar 

  • Wijewickreme AN, Kitts DD, Durance TD (1997) Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products. J Agric Food Chem 45:4577–4583

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by FCT (Portuguese Foundation for Science and Technology) to the Research Units 62/94—QOPNA, in Aveiro, and Centro de Química de Vila Real (POCTI-SFA-3-616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, F.M., Coimbra, M.A. Role of hydroxycinnamates in coffee melanoidin formation. Phytochem Rev 9, 171–185 (2010). https://doi.org/10.1007/s11101-009-9151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9151-7

Keywords

Navigation