Skip to main content
Log in

Host plant as an organizer of microbial evolution in the beneficial symbioses

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Evolution of beneficial plant–microbe symbioses is presented as a result of selective processes induced by hosts in the associated microbial populations. These processes ensure a success of “genuine mutualists” (which benefit the host, often at the expense of their own fitness) in competition with “symbiotic cheaters” (which consume the resources provided by host without expressing the beneficial traits). Using a mathematical model describing the cyclic microevolution of rhizobia–legume symbiosis, we suggest that the selective pressures in favor of N2-fixing (Fix+) strains operate within the in planta bacterial population due to preferential allocation of C resources into Fix+ nodules (positive partners’ feedbacks). Under the clonal infection of nodules, Fix+ strains (“genuine mutualists”) are supported by the group (inter-deme, kin) selection while under the mixed infections, this selection is ineffective since the Fix+ strains are over-competed by Fix ones (“symbiotic cheaters”) in the nodular habitats. Nevertheless, under mixed infections, Fix+ strains may be supported due to the coevolutionary responses form plant population which induce the mutualism-specific types of natural (group, individual) selection including the frequency dependent selection implemented in rhizobia population during the competition for host infection. Using the model of multi-strain bacterial competition for inoculation of symbiotic (rhizospheric, nodular) habitats, we demonstrate that the individual selection in favor of host-specific mutualist genotypes is more intensive than in favor of non-host-specific genotypes correlating the experimental data on the coordinated increases of symbiotic efficiency and specificity in the rhizobia–legume coevolution. However, an overall efficiency of symbiotic system is maximal when the non-host-specific mutualists are present in rhizobia population, and selection in favor of these mutualists operating at the whole population level is of key importance for improving the symbiosis. Construction of the agronomically valuable plant–microbe systems should provide the optimization of host-specific versus non-host-specific mutualists’ composition in legume inoculants combined with the clonal penetration of these mutualists into the nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amarger N, Lobreau JP (1982) Quantitative study of nodulation competitiveness in Rhizobium strains. Appl Environ Microbiol 44:583–588

    PubMed  Google Scholar 

  • Balachandar D, Raja P, Kumar K et al (2007) Non-rhizobial nodulation in legumes. Biotechnol Mol Biol Rev 2:49–57

    Google Scholar 

  • Bassam BJ, Mahanty HK, Gresshoff PM (1987) Symbiotic interaction of auxotrophic mutants of Rhizobium trifolii with white clover (Trifolium repens). Endocyt C Res 4:331–347

    Google Scholar 

  • Beattie GA, Clayton MK, Handelsman J (1989) Quantitative comparison of the laboratory and field competitiveness of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 55:2755–2761

    PubMed  CAS  Google Scholar 

  • Berg G, Müller H, Zachow C et al (2008) Endophytes: structural and functional diversity and biotechnological applications in control of plant pathogens. Ecol Genet 6:17–26

    CAS  Google Scholar 

  • Bethlenfalvay GI, Abu-Shakra SS, Phillips DA (1978) Interdependence of nitrogen nutrition and photosynthesis in Pisum sativum L. II. Host plant response to nitrogen fixation by Rhizobium strains. Plant Physiol 62:131–133

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA, Mathesius U, Rose RJ et al (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44–51

    Article  PubMed  CAS  Google Scholar 

  • Bosworth AH, Williams MK, Albrecht KA et al (1992) Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol 60:3815–3822

    Google Scholar 

  • Brewin NJ (1998) Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbiosomes. In: Spaink H, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodeling in the Rhizobium–legume symbiosis. Crit Rev Plant Sci 23:1–24

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bryan JA, Berlyn GP, Gordon JC (1996) Towards a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Darlington PJ (1978) Altruism: its characteristics and evolution. Proc Natl Acad Sci USA 75:385–389

    Article  PubMed  Google Scholar 

  • Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Nat 156:567–576

    Article  Google Scholar 

  • Dorosinsky LM, Lazareva NM (1968) On the specificity of soybean and lupine nodule bacteria. Mikrobiologia 37:115–121 (in Russian)

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity 81:599–603

    Article  Google Scholar 

  • Dyakov YT, Dzhavakhiya V, Korpela T (2007) Comprehensive and molecular phytopathology. Elsevier, Amsterdam

    Google Scholar 

  • Foster KR, Kokko H (2006) Cheating can stabilize cooperation in mutualisms. Proc Roy Soc B 273:2233–2239

    Article  Google Scholar 

  • Frank SA (1992) Models of plant–pathogen co-evolution. Trends Genet 8:213–219

    PubMed  CAS  Google Scholar 

  • Frank SA (1994) Genetics of mutualism: the evolution of altruism between species. Theor Biol 170:393–400

    Article  CAS  Google Scholar 

  • Frank SA (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proc Roy Soc Lond B 263:339–344

    Article  CAS  Google Scholar 

  • Graften A (2007) Detecting kin selection at work using inclusive fitness. Proc Roy Soc Lond B 274:713–719

    Article  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Gundel PE, Batista WB, Texeira M et al (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc Roy Soc B 275:897–905

    Article  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Longmans, Green & Co, New York

    Google Scholar 

  • Hamilton WDJ (1964) The genetical evolution of social behavior. J Theor Biol 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Herre EA, Knowlton N, Mueller UG et al (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW et al (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev 5:619–633

    Article  CAS  Google Scholar 

  • Kaminski PA, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA et al (2003) Host sanctions and the legume-Rhizobium mutualism. Nature 425:78–81

    Article  PubMed  CAS  Google Scholar 

  • Kinkema M, Scott PL, Gresshoff PM (2006) Legume nodulation: successful symbiosis through short- and long-distance signaling. Funct Plant Biol 33:707–721

    Article  CAS  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intercellular symbiosis. Trends Plant Sci 7:511–518

    Article  PubMed  CAS  Google Scholar 

  • Kneip C, Lockhart P, Voß C et al (2007) Nitrogen fixation in eukaryotes—new models for symbiosis. BMC Evol Biol 7:55

    Article  PubMed  Google Scholar 

  • Kurchak ON, Provorov NA, Simarov BV (2001) Plasmid pSym1-32 of Rhizobium leguminosarum bv. viceae controlling nitrogen fixing activity, effectiveness of symbiosis, competitiveness and acid tolerance. Russ J Genet 37:1025–1031

    Article  CAS  Google Scholar 

  • Laguerre G, Mavingui P, Allard MR et al (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction lengths polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg G (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145–1147

    Article  Google Scholar 

  • Mettler LE, Gregg TG (1969) Population genetics and evolution. Prentice-Hall, Inc, Englewood Cliffs

    Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection on a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nester E, Wood D, Pantoja M, Liu P (2004) Agrobacterium–plant interactions: unfinished business and continuing surprises. In: Tikhonovich IA, Lugtenberg BJJ, Provorov NA (eds) Biology of plant–microbe interactions. Biont, St.-Petersburg

    Google Scholar 

  • Pankhurst CE, MacDonald PE, Reeves JM (1986) Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti. J Gen Microbiol 132:2321–2328

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Parsons R (2002) Nodule infection and regulation in the GunneraNostoc symbiosis. Proc Roy Irish Acad 102B(1):41–43

    Article  Google Scholar 

  • Person C, Samborski DJ, Rohringer R (1962) The gene-for-gene concept. Nature 194:561–562

    Article  PubMed  CAS  Google Scholar 

  • Plazinski J (1981) Isolation of ineffective and high-effective mutant strains of Rhizobium species using translocatable drug-resistance elements as mutagens. Acta Microbiol Polon 30:89–95

    CAS  Google Scholar 

  • Provorov NA (1994) The interdependence between taxonomy of legumes and specificity of their interaction with rhizobia in relation to evolution of the symbiosis. Symbiosis 17:183–200

    Google Scholar 

  • Provorov NA (1998) Coevolution of rhizobia with legumes: facts and hypotheses. Symbiosis 24:337–367

    Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume–rhizobia symbiosis. Genet Res Crop Evol 50:89–99

    Article  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2000) Population genetics of rhizobia: construction and analysis of an “infection and release” model. J Theor Biol 205:105–119

    Article  PubMed  CAS  Google Scholar 

  • Provorov NA, Vorobyov NI (2006) Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor Popul Biol 70:262–272

    Article  PubMed  Google Scholar 

  • Provorov NA, Vorobyov NI (2008a) Evolution of symbiotic bacteria in “plant–soil” systems: interplay of molecular and population mechanisms. In: Kim MB (ed) Progress in environmental microbiology. Nova Sci Publ Inc, New York

    Google Scholar 

  • Provorov NA, Vorobyov NI (2008b) Simulation of plant–bacteria co-evolution in the mutually beneficial symbiosis. Ecol Genet 6:34–47

    Google Scholar 

  • Provorov NA, Borisov AY, Tikhonovich IA (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232

    Article  PubMed  CAS  Google Scholar 

  • Ruse M (2000) Limits to our knowledge of evolution. In: Clegg MT, Hecht MK, Macinryre RJ (eds) Evolutionary biology. Kluwer, New York, pp 3–33

    Google Scholar 

  • Schardl CL, Leuchtmann A, Chung KR et al (1997) Coevolution by common descent of fungal symbionts (Epichloe spp.) and grass hosts. Mol Biol Evol 14:133–143

    CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H et al (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    PubMed  CAS  Google Scholar 

  • Sharypova LA, Yurgel SN, Keller M et al (1998) The eff-482 locus of Sinorhizobium meliloti CXM1–105 that influences symbiotic effectiveness consists of three genes encoding an endoglucanase, a transcriptional regulator and an adenylate cyclase. Mol Gen Genet 261:1032–1044

    Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixing mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Cromwell Press Ltd, Kew

    Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  PubMed  CAS  Google Scholar 

  • Streeter J (1995) Integration of plant and bacterial metabolism in nitrogen fixing systems. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer, Dordrecht

    Google Scholar 

  • Tikhonovich IA, Provorov NA (2007) Beneficial plant–microbe interactions. In: Dyakov YT, Dzhavakhiya V, Korpela T (eds) Comprehensive and molecular phytopathology. Elsevier, Amsterdam

    Google Scholar 

  • Tikhonovich IA, Provorov NA (2009) From plant–microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration. Ann Appl Biol 154:341–350

    Article  Google Scholar 

  • Vorobyov NI, Provorov NA (2008) Simulation of evolution of legume–rhizobia symbiosis under the multi-strain bacterial competition for inoculation of symbiotic habitats. Ecol Genet 6:3–11 (in Russian)

    Google Scholar 

  • West SA, Murray MG, Machado CA et al (2001) Testing Hamilton’s rule with competition between relatives. Nature 409:510–513

    Article  PubMed  CAS  Google Scholar 

  • Williams GS (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

Download references

Acknowledgments

Supported by Russian Foundation of Basic Research (grant 09-04-00907a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai A. Provorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provorov, N.A., Vorobyov, N.I. Host plant as an organizer of microbial evolution in the beneficial symbioses. Phytochem Rev 8, 519–534 (2009). https://doi.org/10.1007/s11101-009-9140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9140-x

Keywords

Navigation