Photosynthetica 2018, 56(4):1326-1335 | DOI: 10.1007/s11099-018-0847-z

Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress

Z. Y. Lei1, J. M. Han1, X. P. Yi1, W. F. Zhang1, Y. L. Zhang1,*
1 Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi, Xinjiang, China

Drought stress causes changes in vein and stomatal density. The objectives of this study were to determine (1) if the changes in vein and stomatal density are coordinated in cotton (Gossypium hirsutum L.) and (2) how these changes affect water-use efficiency (WUE). The results showed significant positive correlations between vein density and stomatal density when cotton was grown under different degrees of drought stress. WUE was significantly positively correlated with the densities of both veins and stomata. Stomatal pore area and stomatal density on the abaxial leaf side, but not the adaxial side, were significantly correlated with WUE, stomatal conductance, leaf net photosynthetic rate, and transpiration rate. In conclusion, coordinated changes in vein and stomatal density improve the WUE of cotton under drought stress. The abaxial leaf side plays a more important role than the adaxial side in WUE and gas exchange.

Additional key words: major leaf veins; maximum stomatal conductance; minor leaf veins; photosynthesis; stomata size

Received: July 19, 2017; Accepted: January 1, 2018; Prepublished online: December 1, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lei, Z.Y., Han, J.M., Yi, X.P., Zhang, W.F., & Zhang, Y.L. (2018). Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress. Photosynthetica56(4), 1326-1335. doi: 10.1007/s11099-018-0847-z
Download citation

Supplementary files

Download filephs-201804-0038_S1.pdf

File size: 123.53 kB

Download filephs-201804-0038_S2.pdf

File size: 165.24 kB

Download filephs-201804-0038_S3.pdf

File size: 86.21 kB

Download filephs-201804-0038_S4.pdf

File size: 89.14 kB

References

  1. Boyce C.K., Brodribb T.J., Feild T.S. et al.: Angiosperm leaf vein evolution was physiologically and environmentally transformative.-P. Roy. Soc. B-Biol. Sci. 276: 177-776, 2009. Go to original source...
  2. Brodribb T.J., Feild T.S.: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests.-Plant Cell Environ. 23: 1381-1388, 2000. Go to original source...
  3. Brodribb T.J., Feild T.S., Jordan G.J.: Leaf maximum photosynthetic rate and venation are linked by hydraulics.-Plant Physiol. 144: 1890-1898, 2007. Go to original source...
  4. Brodribb T.J., Jordan G.J.: Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.-New Phytol. 192: 437-448, 2011. Go to original source...
  5. Buckley T.N., John G.P., Scoffoni C. et al.: How does leaf anatomy influence water transport outside the xylem?-Plant Physiol. 168: 1616-1635, 2015. Go to original source...
  6. Carins M.R., Jordan G.J., Brodribb T.J.: Differential leaf expansion can enable hydraulic acclimation to sun and shade.-Plant Cell Environ. 35: 1407-1418, 2012. Go to original source...
  7. Chaves M.M., Oliveira M.M.: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.-J. Exp. Bot. 55: 2365-2384, 2004. Go to original source...
  8. Costa J.M., Ortuño M.F., Chaves M.M. et al.: Deficit irrigation as a strategy to save water: physiology and potential application to horticulture.-J. Integr. Plant Biol. 49: 1421-1434, 2007. Go to original source...
  9. Dow G.J., Bergmann D.C.: Patterning and processes: how stomatal development defines physiological potential.-Curr. Opin. Plant Biol. 21: 67-74, 2014. Go to original source...
  10. Drake P.L., Froend R.H., Franks P.J.: Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance.-J. Exp. Bot. 64: 495-505, 2013. Go to original source...
  11. Fanourakis D., Giday H., Milla R. et al.: Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides.-Ann. Bot.-London 115: 555-565, 2015. Go to original source...
  12. Feild T.S., Brodribb T.J., Iglesias A. et al.: Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.-P. Natl. Acad. Sci. USA 108: 8363-8366, 2011. Go to original source...
  13. Fiorin L., Brodribb T.J., Anfodillo T.: Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.-New Phytol. 209: 216-227, 2015. Go to original source...
  14. Flexas J., Galmés J., Gallé A. et al.: Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement.-Aust. J. Grape Wine R. 16: 106-121, 2010. Go to original source...
  15. Flexas J., Niinemets Ü., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency.-Photosynth. Res. 117: 45-59, 2013. Go to original source...
  16. Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.-P. Natl. Acad. Sci. USA 106: 10343-10347, 2009. Go to original source...
  17. Franks P.J., Beerling D.J., Berner R.A.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.-P. Natl. Acad. Sci. USA 106: 10343-10347, 2009a. Go to original source...
  18. Franks P.J., Doheny-Adams W., Britton-Harper T. et al.: Increasing water use efficiency directly through genetic manipulation of stomatal density.-New Phytol. 207: 188-195, 2015. Go to original source...
  19. Franks P.J., Drake P.L., Beerling D.J.: Plasticity in maximum stomatal conductance constrained, by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.-Plant Cell Environ. 32: 1737-1748, 2009b. Go to original source...
  20. Franks P.J., Farquhar G.D. The mechanical diversity of stomata and its significance in gas-exchange control.-Plant Physiol. 143: 78-87, 2007. Go to original source...
  21. Franks P.J., Farquhar G.D. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.-Plant Physiol. 125: 935-942, 2001. Go to original source...
  22. Gago J., Douthe C., Florez-Sarasa I. et al.: Opportunities for improving leaf water use efficiency under climate change conditions.-Plant Sci. 226: 108-119, 2014. Go to original source...
  23. Gitz D.C., Liu-Gitz L., Britz S.J. et al.: Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars.-Environ. Exp. Bot. 53: 343-355, 2005. Go to original source...
  24. Hsie B.S., Mendes K.R., Antunes W.C. et al.: Jatropha curcas L. (Euphorbiaceae) modulates stomatal traits in response to leafto-air vapor pressure deficit.-Biomass Bioenerg. 81: 273-281, 2015. Go to original source...
  25. Hu J., Yang Q.Y., Huang W. et al.: Effects of temperature on leaf hydraulic architecture of tobacco plants.-Planta 240: 489-496, 2014. Go to original source...
  26. John G.P., Scoffoni C., Buckley T.N. et al.: The anatomical and compositional basis of leaf mass per area.-Ecol. Lett. 20: 412-425, 2017. Go to original source...
  27. Küppers M.: Carbon relations and competition between woody species in a Central European hedgerow.-Oecologia 64: 344-354, 1984. Go to original source...
  28. Lauriano J.A., Ramalho J.C., Lidon F.C. et al.: Peanut photosynthesis under drought and re-watering.-Photosynthetica 42: 37-41, 2004. Go to original source...
  29. Lu Z., Quiñones M.A., Zeiger E.: Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality.-Plant Cell Environ. 16: 851-858, 1993. Go to original source...
  30. McKown A.D., Cochard H., Sack L.: Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution.-Am. Nat. 175: 447-460, 2010. Go to original source...
  31. Meinzer F.C., Grantz D.A.: Coordination of stomatal, hydraulic, and canopy boundary layer properties: Do stomata balance conductances by measuring transpiration?-Physiol. Plantarum 83: 324-329, 1991. Go to original source...
  32. Morison J.I., Baker N.R., Mullineaux P.M. et al.: Improving water use in crop production.-Philos. T. Roy. Soc. B 363: 639-658, 2008. Go to original source...
  33. Noblin X., Mahadevan L., Coomaraswamy I.A. et al.: Optimal vein density in artificial and real leaves.-P. Natl. Acad. Sci. USA 105: 9140-9144, 2008. Go to original source...
  34. Ocheltree T.W., Nippert J.B., Prasad P.V.: Changes in stomatal conductance along grass blades reflect changes in leaf structure.-Plant Cell Environ. 35: 1040-1049, 2008. Go to original source...
  35. Parry M.A.J., Flexas J., Medrano H.: Prospects for crop production under drought: research priorities and future directions.-Ann. Appl. Biol. 147: 211-226, 2005. Go to original source...
  36. Philip J.R.: Plant water relations: some physical aspects.-Annu. Rev. Plant Physio. 17: 245-268, 2003. Go to original source...
  37. Rockwell F.E., Holbrook N.M., Stroock A.D.: The competition between liquid and vapor transport in transpiring leaves.-Plant Physiol. 164: 1741, 2014. Go to original source...
  38. Russin W.A., Evert R.F.: Studies on the leaf of Populus deltoides (Salicaceae): Morphology and anatomy.-Am. J. Bot. 71: 1398-1415, 1984. Go to original source...
  39. Sack L., Frole K.: Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.-Ecology 87: 483-491, 2006. Go to original source...
  40. Sack L., Holbrook N.M.: Leaf hydraulics.-Annu. Rev. Plant Biol. 57: 361-381, 2006. Go to original source...
  41. Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.-New Phytol. 198: 983-1000, 2013. Go to original source...
  42. Sharpe P.J.H.: Adaxial and abaxial stomatal resistance of cotton in the field.-Agron. J. 65: 570-574, 1973. Go to original source...
  43. Walls R.L.: Angiosperm leaf vein patterns are linked to leaf functions in global-scale data set.-Am. J. Bot. 98: 244-53, 2011. Go to original source...
  44. Wang Y., Noguchi K., Terashima I.: Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.-Plant Cell Environ. 31: 1307-1316, 2008. Go to original source...
  45. Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.-J. Exp. Bot. 59: 3317-3325, 2008. Go to original source...
  46. Yoo C.Y., Pence H.E., Jin J.B. et al.: The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1.-Plant Cell 22: 4128-4141, 2010. Go to original source...
  47. Zhang S.B., Guan Z.J., Sun M. et al.: Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae.-PLoS ONE 7: e40080, 2012. Go to original source...
  48. Zhao W.L., Siddiq Z., Fu P.L. et al.: Stable stomatal number per minor vein length indicates the coordination between leaf water supply and demand in three leguminous species.-Sci. Rep. 7: 2211, 2017. Go to original source...
  49. Zhou C.B., Xie C.: A simple method to quantify the size and shape of stomatal pore.-In: The Proceedings of the 17th International Congress on Photosynthesis Research, Aug. 7-12 2016. Maastricht 2016.
  50. Zwieniecki M.A., Boyce C.K., Holbrook N.M.: Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves.-Plant Cell Environ. 27: 357-365, 2004. Go to original source...