Photosynthetica 2018, 56(2):678-686 | DOI: 10.1007/s11099-017-0717-0

Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants

M. Faizan1, A. Faraz1, M. Yusuf1, S. T. Khan2, S. Hayat1,*
1 Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
2 DNA Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia

The present study was carried out to assess the role of zinc oxide nanoparticles (ZnO-NPs) in tomato plants on growth, photosynthetic efficiency, and antioxidant system. At 20-d stage of growth, roots of tomato plants were dipped into 0, 2, 4, 8, or 16 mg(ZnO-NPs) L-1 for 15, 30, and 45 min and then seedlings were transplanted in their respective cups and allowed to grow under natural environmental conditions. At 45-d stage of growth, the ZnO-NPs treatments significantly increased growth, photosynthetic efficiency together with activities of carbonic anhydrase and antioxidant systems in a concentration- and duration-dependent manner. Moreover, the treatment by 8 mg(ZnO-NPs) L-1 for 30 min proved to be the most effective and resulted in maximum activities of antioxidant enzymes, proline accumulation and the photosynthetic rate. We concluded that presence of ZnO-NPs improved the antioxidant systems and speeded up proline accumulation that could provide stability to plants and improved photosynthetic efficiency.

Additional key words: antioxidant enzyme; gas exchange; growth; micronutrient

Received: August 5, 2016; Accepted: December 6, 2016; Published: June 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T., & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica56(2), 678-686. doi: 10.1007/s11099-017-0717-0
Download citation

References

  1. Ajouri A., Asgedom H., Becker M.: Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. - J. Plant Nutr. Soil Sc. 167: 630-636, 2004. Go to original source...
  2. Alia., Pardha Saradhi P., Mohanty P.: Involvment of proline in protecting thylakoid membranes against free radical-induce photodamage. - Photochem. Photobiol. B 38: 253-257, 1997. Go to original source...
  3. An J., Zhang M., Wang S. et al.: Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. - LWT-Food Sci. Technol. 41: 1100-1107, 2008. Go to original source...
  4. Bernhardt E.S., Colman B.P., Hochella M.F. et al.: An ecological perspective on nanomaterial impacts in the environment. - J. Environ. Qual. 39: 1954-1965, 2010. Go to original source...
  5. Berube D.M., Searson E.M., Morton T.S. et al.: Project on emerging nanotechnologies-consumer product inventory evaluated. - Nanotech. Law Business 7: 152, 2010.
  6. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  7. Cakmak I.: Role of zinc in protecting plant cells from reactive oxygen species. - New Phytol. 146: 185-205, 2000. Go to original source...
  8. Castiglione M.R., Cremonini R.: Nanoparticles and higher plants. - Caryologia 62: 161-165, 2009. Go to original source...
  9. Chinnamuthu C.R., Boopathi M.P.: Nanotechnology and agroecosystem. - Madras Agri. J. 96: 17-31, 2009.
  10. Christou P., McCabe D.E., Swain W.F.: Stable transformation of soybean callus by DNA coated gold particles. - Plant Physiol. 87: 671-674, 1988. Go to original source...
  11. Dietz K.J., Herth.: Plant nanotoxicology. - Cell Press 16: 582-589, 2011. Go to original source...
  12. Dwivedi R.S., Randhawa N.S.: Evaluation of rapid test for hidden hunger of zinc in plants. - Plant Soil 40: 445-451, 1974. Go to original source...
  13. Fabrega J., Luoma S.N., Tyler C.R. et al.: Silver nanoparticles: behaviour and effects in the aquatic environment. - Environ. Int. 37: 517-531, 2011. Go to original source...
  14. Fukui H., Horie M., Endoh S. et al.: Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. - Chem. Biol. Interact. 198: 29-37, 2012. Go to original source...
  15. García-Sánchez S., Bernales I., Cristobal S.: Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. - BMC Genomics 16: 341, 2015. Go to original source...
  16. Garg N., Manchanda G.: ROS generation in plants: boon or bane? - Plant Biosyst. 143: 81-96, 2009. Go to original source...
  17. Ge Y., Schimel JP., Holden PA.: Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. - Appl. Environ. Microb. 78: 6749-6758, 2012. Go to original source...
  18. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  19. Govorov A.O., Carmeli I.: Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. - Nano. Lett. 7: 620-625, 2007. Go to original source...
  20. Haghighi M., Afifipour Z., Mozafarian M.: The effect of N-Si on tomato seed germination under salinity levels. - J. Biol. Environ. Sci. 6: 87-90, 2012.
  21. Helaly M.N., El-Metwally M.A., El-Hoseiny H. et al.: Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. - Aust. J. Crop Sci. 8: 612-624, 2014.
  22. Hewitt E.J.: Sand and Water Culture Methods Used in the Study of Plant Nutrition. Technical Communication No. 22. Pp. 104. Commonwealth Bureau, London 1966.
  23. Jaworski E.G.: Nitrate reductase assay in intact plant tissue. - Biochem. Biophys. Res. Co. 43: 1274-1279, 1971. Go to original source...
  24. Kalteh M., Alipour Z.T., Ashraf S. et al.: Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. - J. Chem. Health Risks 4: 49-55, 2014.
  25. Keller A.A., McFerran S., Lazareva A. et al.: Global life cycle releases of engineered nanomaterials. - J. Nano. Res. 15: 1-17, 2013. Go to original source...
  26. Khan S.T., Ahmad J., Ahamed M. et al.: Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth and attenuate biofilm formation activity of Streptococcus mitis. - J. Biol. Inorg. Chem. 21: 295-303, 2016. Go to original source...
  27. Khan T.A., Fariduddin Q., Yusuf M.: Lycopersicon esculentum under low temperature stress: an approach toward enhanced antioxidants and yield. - Environ. Sci. Pollut. R. 22: 14178-14188, 2015. Go to original source...
  28. Khan J., Brennan D.M., Bradley N. et al.: 3 Nitrotyrosine in the proteins of human plasma determined by an ELISA method. - Biochem. J. 330: 795-801, 1998. Go to original source...
  29. Khodakovskaya M.V., de Silva K., Biris A.S. et al.: Carbon nanotubes induce growth enhancement to tobacco cells. - ACS Nano 6: 2128-2135, 2012. Go to original source...
  30. Lei Z., Mingyu S., Chao L. et al.: Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. - Biol. Trace. Elem. Res. 119: 68-76, 2007. Go to original source...
  31. Lin D., Xing B.: Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. - Environ. Pollut.150: 243-50, 2007. Go to original source...
  32. Ma X., Geiser-Lee J., Deng Y. et al.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. - Sci. Total Environ. 408: 3053-3061, 2010. Go to original source...
  33. Mahajan P., Dhoke S.K., Khanna A.S.: Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. - J. Nanotechol. 2011: 696535, 2011. Go to original source...
  34. Nair R., Poulose A.C., Nagaoka Y. et al.: Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolables for plants. - Fluorescence 21: 2057-2068, 2011. Go to original source...
  35. Noji T., Kamidaki C., Kawakami K. et al.: Photosynthetic oxygen evolution in mesoporous silica material adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. - Langmuir 27: 705-713, 2011. Go to original source...
  36. Oancea S., Padureanu S., Oancea A.V.: Growth dynamics of corn plants during anionic clays action. - Lucrări Științifice 52: 212-217, 2009.
  37. Piccinno F., Gottschalk F., Seeger S. et al.: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. - J. Nano. Res. 14: 1109, 2010. Go to original source...
  38. Poma A., Giorgio M.L.D.: Toxicgenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: A Review. - Curr. Genomics 9: 571-585, 2008. Go to original source...
  39. Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y. et al.: Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. - J. Plant Nutr. 35: 905-927, 2012. Go to original source...
  40. Raliya R., Nair R, Chavalmane S et al.: Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. - Metallomics 7: 1584-1594, 2015. Go to original source...
  41. Ramesh M., Palanisamy K., Babu K. et al.: Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. - J. Global Biosci. 3: 415-422, 2014.
  42. Salama H.M.H.: Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). - Int. Res. J. Biotech. 3: 190-197, 2012.
  43. Schwab F., Zhai G., Kern M. et al.: Barriers, pathways and processes for uptake, translocation, and accumulation of nanomaterials in Plants. Critical review. - Nanotoxicology 10: 257-278, 2016. Go to original source...
  44. Siddiqui M.H., Al-Whaibi M.H., Faisal M., Al Sahli A.A.: Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. - Environ. Toxicol. Chem. 33: 2429-2437, 2014. Go to original source...
  45. Szabados L., Savoure A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 89-97, 2010. Go to original source...
  46. Venkatachalam P., Priyanka N., Manikandan K. et al.: Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). - Plant Physiol. Bioch. 110: 118-127, 2017. Go to original source...
  47. Wang Q., Ma X., Zhang W. et al.: The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. - Metallomics 4: 1105-1112, 2012. Go to original source...
  48. Welch R.M., Webb M.J., Lonegaran J.F.: Zinc in membrane function and its role in phosphorus toxicity. - In: Scaife A. (ed.): Proceedings of 9th International Plant Nutrition. Pp. 710-715. Commonw. Agric. Bur., Farnham 1982.
  49. Xie Y., Li B., Zhang Q. et al.: Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. - J. Nanjing Forest Univ. 2: 59-63, 2012.