Photosynthetica 2010, 48(2):227-233 | DOI: 10.1007/s11099-010-0028-1

Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis

A. Pavlovič1,*, L. Singerová1, V. Demko1, J. Šantrůček2, J. Hudák1
1 Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
2 Department of Plant Physiology, Faculty of Biology, The University of South Bohemia, České Budějovice, Czech Republic

Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (P N) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil.

Additional key words: carnivorous plant; chlorophyll fluorescence; gas exchange; Nepenthes talangensis; nitrogen supply; pitcher plant; rate of photosynthesis

Received: November 26, 2009; Accepted: March 19, 2010; Published: June 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pavlovič, A., Singerová, L., Demko, V., Šantrůček, J., & Hudák, J. (2010). Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis. Photosynthetica48(2), 227-233. doi: 10.1007/s11099-010-0028-1
Download citation

References

  1. Adamec, L.: Mineral nutrition of carnivorous plants - A review. - Bot. Rev. 63: 273-299, 1997. Go to original source...
  2. Adlassnig, W., Peroutka, M., Lambers, H., Lichtscheidl, I.K.: The roots of carnivorous plants. - Plant Soil 274: 127-140, 2005. Go to original source...
  3. Aldenius, J., Carlsson, B., Karlsson, S.: Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to the nutrient content of the substrate. - New Phytol. 93: 53-59, 1983. Go to original source...
  4. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  5. Bott, T., Gretchen, A.M., Young, E.B.: Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. - New Phytol. 180: 631-641, 2008. Go to original source...
  6. Brewer, J.S.: Why don't carnivorous pitcher plant's compete with non-carnivorous plants for nutrients? - Ecology 84: 451-462, 2003. Go to original source...
  7. Clarke, C., Moran, J.: Nepenthes of Sumatra and Peninsular Malaysia. - Natural History Publications, Kota Kinabalu 2001.
  8. Darwin, C.R.: Insectivorous Plants - John Murray, London 1875. Go to original source...
  9. Darwin, F.: Experiments on the nutritions of Drosera rotundifolia. - J. Linn. Soc. Bot. (London) 17: 17-23, 1878. Go to original source...
  10. Eleuterius, L.N., Jones, S.B.: A floristic and ecological study of pitcher plant bog in south Mississippi. - Rhodora 71: 29-34, 1969.
  11. Ellison, A.M.: Nutrient limitation and stoichiometry of carnivorous plants. - Plant Biol. 8: 740-747, 2006. Go to original source...
  12. Ellison, A.M., Gotelli, N.J.: Nitrogen availability alters the expression of carnivory in the northern pitcher plant Sarracenia purpurea. - Proc. Nat. Acad. Sci. USA 99: 4409-4412, 2002. Go to original source...
  13. Farnsworth, E.J., Ellison A.M.: Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. - J. Ecol. 96: 213-221, 2008. Go to original source...
  14. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. - Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503-537, 1989. Go to original source...
  15. Givnish, T.J., Burkhardt, E.L., Happel, R.E., Weintraub, J.D.: Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. - Am. Natur. 124: 479-497, 1984. Go to original source...
  16. Huang, Z.-A., Jiang, D.-A., Yang, Y., Sun, J.-W., Jin, S.-H.: Effect of nitrogen deficiency on gas exchange, chlorophyll fluorescence and antioxidant enzymes in leaves of rice plants. - Photosynthetica 42: 357-364, 2004. Go to original source...
  17. Juniper B.E., Robins R.J., Joel D.M.: The Carnivorous Plants. - Academic Press, London 1989.
  18. Karlsson, P.S., Pate, J.S.: Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of Drosera. - Oecologia 92: 8-13, 1992. Go to original source...
  19. Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Met. Enzymol. 148: 350-382, 1987. Go to original source...
  20. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  21. Moran, J.A., Merbach, M.A., Livingstone, N.J., Clarke, C.M., Booth, W.E.: Termite prey specialization in the pitcher plant Nepenthes albomarginata-Evidence from stable isotope analysis. - Ann. Bot. 88: 307-311, 2001. Go to original source...
  22. Moran, J.A., Moran, A.J.: Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher (Nepenthes rafflesiana). - Int. J. Plant Sci. 159: 996-1001, 1998. Go to original source...
  23. Müller, P., Li, X.P., Niyogi, K.K.: Non-photochemical quenching: A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  24. Nerz, J., Wistuba, A.: Five new taxa of Nepenthes (Nepenthaceae) from north and west Sumatra. - Carniv. Plant Newslett. 23: 101-114, 1994. Go to original source...
  25. Osunkoya, O.O., Daud, S.D., Di-Giusto, B., Wimmer, F.L., Holige, T.M.: Construction costs and physico-chemical properties of the assimilatory organs of Nepenthes species in northern Borneo. - Ann. Bot. 99: 895-906, 2007. Go to original source...
  26. Pavlovič, A., Singerová, L., Demko, V., Hudák, J.: Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. - Ann. Bot. 104: 307-314, 2009. Go to original source...
  27. Schulze, W., Schulze, E.D., Pate, J.S., Gillinson, A.N.: The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. - Oecologia 112: 464-471, 1997. Go to original source...
  28. Stewart, C.N., Nilsen, E.T.: Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory. - Can. J. Bot. 70: 1409-1416, 1992. Go to original source...
  29. Svensson, B.M.: Competition between Sphagnum fuscum and Drosera rotundifolia: A case of eco-system engineering. - Oikos 74: 205-212. 1995. Go to original source...
  30. Wong, S.C., Cowan, I.R., Farquhar, G.D.: Leaf conductance in relation to rate of CO2 assimilation. 1. Influence of nitrogen nutrition, phosphorus-nutrition, photon flux-density, and ambient partial pressure of CO2 during ontogeny. - Plant Physiol. 78: 821-825, 1985. Go to original source...
  31. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior L., Pyankov, V.I., Roumet, C., Thomas, S.C, Tjoelker, M.G., Veneklaas, E.J., Villar, R: The worldwide leaf economic spectrum. - Nature 428: 821-827, 2004. Go to original source...