Skip to main content

Advertisement

Log in

The impact of cytochrome P450 3A5 genotype on early tacrolimus metabolism and clinical outcomes in lung transplant recipients

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background Tacrolimus (Tac) is the cornerstone of immunosuppressant therapy after lung transplantation (LTx). It shows great inter-individual variability in pharmacokinetics, which could partly be explained by pharmacogenetic factors. Aim We aim to investigate the influence of cytochrome P450 3A5 (CYP3A5) genotypes on early post-LTx Tac metabolism and whether it is affected by concomitant use of azole antifungals. Also, we explored the association between CYP3A5 genotype and clinical outcomes. Method 90 recipients who underwent LTx from 2017 to 2019 were enrolled in the study. The effect of CYP3A5 genotype on Tac metabolism and interaction with azole antifungals were assessed during week 1–4 after transplantation. Associations between CYP3A5 genotype and the incidence of acute kidney injury (AKI), length of hospital stay and mortality were analyzed. ResultsCYP3A5*1 carriers had lower dose adjusted concentration (C/D) than CYP3A5*3/*3 group at all time points (p < 0.05). The dose ratio of CYP3A5*1 carriers to CYP3A5*3/*3 was between 1.3 and 2.4 when comparable concentrations were reached. Use of azole antifungals did not blunt the effect of CYP3A5 genotypes on Tac metabolism. Logistic regression showed Tac concentration ≥ 7.5 ng/mL at week 1 was associated with higher incidence of AKI. No statistically significant difference was found between CYP3A5 genotypes and the length of hospital stay. Kaplan–Meier analysis showed no statistically significant difference between 30-day or 1-year mortality and CYP3A5 genotype. Conclusion CYP3A5 genotype could affect Tac metabolism early after LTx. However, it had no influence on the incidence of AKI, length of hospital stay and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birdwell KA, Decker B, Barbarino JM, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hesselink DA, Bouamar R, Elens L, et al. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123–39.

    Article  CAS  PubMed  Google Scholar 

  3. Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.

    Article  CAS  PubMed  Google Scholar 

  4. Yaowakulpatana K, Vadcharavivad S, Ingsathit A, et al. Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation. Eur J Clin Pharmacol. 2016;72(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  5. Coller JK, Ramachandran J, John L, et al. The impact of liver transplant recipient and donor genetic variability on tacrolimus exposure and transplant outcome. Br J Clin Pharmacol. 2019;85(9):2170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu BY, Chen WQ, Chen ZG, et al. The effects of CYP3A5 genetic polymorphisms on serum tacrolimus dose-adjusted concentrations and long-term prognosis in Chinese heart transplantation recipients. Eur J Drug Metab Pharmacokinet. 2019;44(6):771–6.

    Article  PubMed  Google Scholar 

  7. Monchaud C, de Winter BC, Knoop C, et al. Population pharmacokinetic modelling and design of a Bayesian estimator for therapeutic drug monitoring of tacrolimus in lung transplantation. Clin Pharmacokinet. 2012;51(3):175–86.

    Article  CAS  PubMed  Google Scholar 

  8. Miano TA, Flesch JD, Feng R, et al. Early tacrolimus concentrations after lung transplant are predicted by combined clinical and genetic factors and associated with acute kidney injury. Clin Pharmacol Ther. 2020;107(2):462–70.

    Article  CAS  PubMed  Google Scholar 

  9. Calabrese DR, Florez R, Dewey K, et al. Genotypes associated with tacrolimus pharmacokinetics impact clinical outcomes in lung transplant recipients. Clin Transplant. 2018;32(8):e13332.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307.

    Article  CAS  PubMed  Google Scholar 

  11. Du WW, Wang XX, Zhang D, et al. Retrospective analysis on incidence and risk factors of early onset acute kidney injury after lung transplantation and its association with mortality. Ren Fail. 2021;43(1):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai X, Song H, Jiao Z, et al. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients. Eur J Pharm Sci. 2020;152:105448.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Xu J, Fan J, et al. Influence of IL-18 and IL-10 polymorphisms on tacrolimus elimination in Chinese lung transplant patients. Dis Markers. 2017;2017:7834035.

    PubMed  PubMed Central  Google Scholar 

  14. Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  15. Woillard JB, Gatault P, Picard N, et al. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant. 2018;18(12):2905–13.

    Article  CAS  PubMed  Google Scholar 

  16. Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87(6):721–6.

    CAS  PubMed  Google Scholar 

  17. Shuker N, Bouamar R, van Schaik RH, et al. A randomized controlled trial comparing the efficacy of Cyp3a5 genotype-based with body-weight-based tacrolimus dosing after living donor kidney transplantation. Am J Transplant. 2016;16(7):2085–96.

    Article  CAS  PubMed  Google Scholar 

  18. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84.

    PubMed  Google Scholar 

  19. Sikma MA, van Maarseveen EM, van de Graaf EA, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant. 2015;15(9):2301–13.

    Article  CAS  PubMed  Google Scholar 

  20. Gijsen V, Mital S, van Schaik RH, et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant. 2011;30(12):1352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sikma MA, Hunault CC, Huitema ADR, et al. Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation. Clin Pharmacokinet. 2020;59(4):403–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kuypers DR, Claes K, Evenepoel P, et al. Clinically relevant drug interaction between voriconazole and tacrolimus in a primary renal allograft recipient. Transplantation. 2006;81(12):1750–2.

    Article  PubMed  Google Scholar 

  23. Mahnke CB, Sutton RM, Venkataramanan R, et al. Tacrolimus dosage requirements after initiation of azole antifungal therapy in pediatric thoracic organ transplantation. Pediatr Transplant. 2003;7(6):474–8.

    Article  CAS  PubMed  Google Scholar 

  24. Peksa GD, Schultz K, Fung HC. Dosing algorithm for concomitant administration of sirolimus, tacrolimus, and an azole after allogeneic hematopoietic stem cell transplantation. J Oncol Pharm Pract. 2015;21(6):409–15.

    Article  CAS  PubMed  Google Scholar 

  25. Sikma MA, Hunault CC, van de Graaf EA, et al. High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury. Eur J Clin Pharmacol. 2017;73(5):573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sikma MA, Hunault CC, Kirkels JH, et al. Association of whole blood tacrolimus concentrations with kidney injury in heart transplantation patients. Eur J Drug Metab Pharmacokinet. 2018;43(3):311–20.

    CAS  PubMed  Google Scholar 

  27. Woodahl EL, Hingorani SR, Wang J, et al. Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. Pharmacogenomics J. 2008;8(4):248–55.

    Article  CAS  PubMed  Google Scholar 

  28. Metalidis C, Lerut E, Naesens M, et al. Expression of CYP3A5 and P-glycoprotein in renal allografts with histological signs of calcineurin inhibitor nephrotoxicity. Transplantation. 2011;91(10):1098–102.

    Article  CAS  PubMed  Google Scholar 

  29. Bosó V, Herrero MJ, Bea S, et al. Increased hospital stay and allograft dysfunction in renal transplant recipients with Cyp2c19 AA variant in SNP rs4244285. Drug Metab Dispos. 2013;41(2):480–7.

    Article  PubMed  Google Scholar 

  30. Flahault A, Anglicheau D, Loriot MA, et al. Clinical impact of the CYP3A5 6986A>G allelic variant on kidney transplantation outcomes. Pharmacogenomics. 2017;18(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  31. Khan AR, Raza A, Firasat S, et al. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020;20(4):553–62.

    Article  CAS  PubMed  Google Scholar 

  32. van Gelder T, Meziyerh S, Swen JJ, et al. The clinical impact of the C0/D ratio and the CYP3A5 genotype on outcome in tacrolimus treated kidney transplant recipients. Front Pharmacol. 2020;11:1142.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jouve T, Fonrose X, Noble J, et al. The TOMATO study (Tacrolimus Metabolization in Kidney Transplantation): impact of the concentration-dose ratio on death-censored graft survival. Transplantation. 2020;104(6):1263–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Wenhui Chen and her team from Department of Lung Transplantation in China-Japan Friendship Hospital for their assistance in conducting the study.

Funding

The study was financed with National Key Research and Development Program of China (No.2020YFC2005504). The funding source had no effect on any part of the study, preparation, or submission of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengmei Li.

Ethics declarations

Conflicts of interest

All authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Wang, X., Zhang, D. et al. The impact of cytochrome P450 3A5 genotype on early tacrolimus metabolism and clinical outcomes in lung transplant recipients. Int J Clin Pharm 44, 418–427 (2022). https://doi.org/10.1007/s11096-021-01359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-021-01359-3

Keywords

Navigation