Skip to main content
Log in

Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life. In the present study we evaluate polymer-protein nanocomposite vehicles as candidates for lyophilization and point-of-care resuspension to provide a transferrable technology for cytosolic protein delivery.

Methods

Self-assembled nanocomposites of engineered poly(glutamate)-tagged (E-tagged) proteins and guanidinium-functionalized PONI homopolymers were generated, lyophilized, and stored for 2 weeks. After reconstitution and delivery, cytosolic access of E-tagged GFP cargo (GFPE15) was assessed through diffuse cytosolic and nuclear fluorescence, and cell killing with chemotherapeutic enzyme Granzyme A (GrAE10). Efficiency was quantified between freshly prepared and lyophilized samples.

Results

Reconstituted nanocomposites retained key structural features of freshly prepared assemblies, with minimal loss of material. Cytosolic delivery (> 80% efficiency of freshly prepared nanocomposites) of GFPE15 was validated in several cell lines, with intracellular access validated and quantified through diffusion into the nucleus. Delivery of GrAE10 elicited significant tumorigenic cell death. Intracellular access of cytotoxic protein was validated through cell viability.

Conclusion

Reconstituted nanocomposites achieved efficient cytosolic delivery of protein cargo and demonstrated therapeutic applicability with delivery of GrAE10. Overall, this strategy represents a versatile and highly translatable method for cytosolic delivery of proteins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s Modified Eagle Medium

DPBS:

Dulbecco’s phosphate-buffered saline

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

GFP:

Green fluorescent protein

MFI:

Mean fluorescence intensity

MW:

Molecular weight

PONI:

Poly(oxanorbornene)imide

TCEP:

Tris(2-carboxyethyl)phosphine

References

  1. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5:951–67.

    Article  PubMed  Google Scholar 

  2. Scaletti F, Hardie J, Lee Y-W, Luther DC, Ray M, Rotello VM. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018;47:3421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luther DC, Jeon T, Goswami R, Nagaraj H, Kim D, Lee YW, et al. Protein delivery: if your GFP (or other small protein) is in the cytosol, it will also be in the nucleus. Bioconjug Chem. 2021;32:891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luther DC, Huang R, Jeon T, Zhang X, Lee Y-W, Nagaraj H, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teo SLY, Rennick JJ, Yuen D, Al-Wassiti H, Johnston APR, Pouton CW. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat Commun. 2021;12.

  6. Smith SA, Selby LI, Johnston APR, Such GK. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem. 2019;30:263–72.

    Article  CAS  PubMed  Google Scholar 

  7. Schneider AFL, Wallabregue ALD, Franz L, Hackenberger CPR. Targeted subcellular protein delivery using cleavable cyclic cell-penetrating peptides. Bioconjug Chem. 2019;30:400–4.

    Article  CAS  PubMed  Google Scholar 

  8. Chen YP, Chen CT, Hung Y, Chou CM, Liu TP, Liang MR, et al. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase. J Am Chem Soc. 2013;135:1516–23.

    Article  CAS  PubMed  Google Scholar 

  9. Vazdar M, Heyda J, Mason PE, Tesei G, Allolio C, Lund M, et al. Arginine “magic”: guanidinium like-charge ion pairing from aqueous salts to cell penetrating peptides. Acc Chem Res. 2018;51:1455–64.

    Article  CAS  PubMed  Google Scholar 

  10. Cho EY, Ryu JY, Lee HAR, Hong SH, Park HS, Hong KS, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotechnol. 2019;17:1–12.

    Article  Google Scholar 

  11. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev. 2020;156:4–22.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Hardie J, Liu Y, Ray M, Luo X, Das R, et al. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment. J Control Release. 2018;283:235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YW, Luther DC, Goswami R, Jeon T, Clark V, Elia J, et al. Direct cytosolic delivery of proteins through coengineering of proteins and polymeric delivery vehicles. J Am Chem Soc. 2020;142:4349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20:1325–36.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32:372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiss WF IV, Young TM, Roberts CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009;98:1246–77.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88.

    Article  CAS  PubMed  Google Scholar 

  18. Rajan R, Ahmed S, Sharma N, Kumar N, Debas A, Matsumura K. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. Mater Adv. 2021;2:1139–76.

    Article  CAS  Google Scholar 

  19. Sofronova AA, Izumrudov VA, Muronetz VI, Semenyuk PI. Similarly charged polyelectrolyte can be the most efficient suppressor of the protein aggregation. Polymer. 2017;108:281–7.

    Article  CAS  Google Scholar 

  20. Debnath K, Shekhar S, Kumar V, Jana NR. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces. 2016;8:20309–18.

    Article  CAS  PubMed  Google Scholar 

  21. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.

    Article  CAS  PubMed  Google Scholar 

  22. Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P. Stability study of nanoparticles of and poly (D, L-lactide-co-glycolide ). Biomaterials. 1996;17:2191–7.

    Article  CAS  PubMed  Google Scholar 

  23. Emami F, Vatanara A, Park EJ, Na DH. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10:1–22.

    Article  CAS  Google Scholar 

  24. Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WLJ. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288–95.

    Article  CAS  PubMed  Google Scholar 

  25. Preston KB, Randolph TW. Stability of lyophilized and spray dried vaccine formulations. Adv Drug Deliv Rev. 2021;171:50–61.

    Article  CAS  PubMed  Google Scholar 

  26. Stärtzel P. Arginine as an excipient for protein freeze-drying: a mini review. J Pharm Sci. 2018;107:960–7.

    Article  PubMed  CAS  Google Scholar 

  27. Mukalel AJ, Evans BC, Kilchrist KV, Dailing EA, Burdette B, Cheung-Flynn J, et al. Excipients for the lyoprotection of MAPKAP kinase 2 inhibitory peptide nano-polyplexes. J Control Release. 2018;282:110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim KR, Ahn KY, Park JS, Lee KE, Jeon H, Lee J. Lyophilization and enhanced stability of fluorescent protein nanoparticles. Biochem Biophys Res Commun. 2011;408:225–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mason PE, Neilson GW, Dempsey CE, Barnes AC, Cruickshank JM. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc Natl Acad Sci. 2003;100:4557–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peveler WJ, Landis RF, Yazdani M, Day JW, Modi R, Carmalt CJ, Rosenberg WM, Rotello VM. A rapid and robust diagnostic for liver fibrosis using a multichannel polymer sensor array. Adv Mater. 2018;30:1800634.

    Article  CAS  Google Scholar 

  31. Ngernpimai S, Geng Y, Makabenta JM, Landis RF, Keshri P, Gupta A, Li C-H, Chompoosor A, Rotello VM. Rapid identification of biofilms using a robust multichannel polymer sensor array. ACS Appl Mater Interfaces. 2019;11:11202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mout R, Ray M, Tay T, Sasaki K, Yesilbag Tonga G, Rotello VM. General strategy for direct cytosolic protein delivery via protein–nanoparticle co-engineering. ACS Nano. 2017;11:6416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Remmele RL Jr, Stushnoff C, Carpenter JF. Real-time in situ monitoring of lysozyme during lyophilization using infrared spectroscopy: dehydration stress in the presence of sucrose. Pharm Res. 1997;14:1548–55.

    Article  CAS  PubMed  Google Scholar 

  34. Simpson RJ. Stabilization of proteins for storage. Cold Spring Harb Protoc. 2010;5:79–120.

    Article  Google Scholar 

  35. Ó’Fágáin C, Colliton K. Storage and lyophilization of pure proteins. Methods Mol Biol. 2017;1485:159–90.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshioka S, Miyazaki T, Aso Y, Kawanishi T. Significance of local mobility in aggregation of β-galactosidase lyophilized with trehalose, sucrose or stachyose. Pharm Res. 2007;24:1660–7.

    Article  CAS  PubMed  Google Scholar 

  37. Billen B, Vincke C, Hansen R, Devoogdt N, Muyldermans S, Adriaensens P, et al. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expr Purif. 2017;133:25–34.

    Article  CAS  PubMed  Google Scholar 

  38. Dong C, Garen CR, Mercier P, Petersen NO, Woodside MT. Characterizing the inhibition of α-synuclein oligomerization by a pharmacological chaperone that prevents prion formation by the protein PrP. Protein Sci. 2019;28:1690–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saeed IA, Ashraf SS. Denaturation studies reveal significant differences between GFP and blue fluorescent protein. Int J Biol Macromol. 2009;45:236–41.

    Article  CAS  PubMed  Google Scholar 

  40. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12:505–23.

    Article  CAS  PubMed  Google Scholar 

  41. Roughton BC, Iyer LK, Bertelsen E, Topp EM, Camarda KV. Protein aggregation and lyophilization: Protein structural descriptors as predictors of aggregation propensity. Comput Chem Eng. 2013;58:369–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang S, Lv J, Gao P, Feng Q, Wang H, Cheng Y. A pH-responsive phase-transition polymer with high serum stability in cytosolic protein delivery. Nano Lett. 2021;21:7855–61.

    Article  CAS  PubMed  Google Scholar 

  43. Schneider AFL, Wallabregue ALD, Franz L, Hackenberger CPR. Targeted subcellular protein delivery using cleavable cyclic cell-penetrating peptides. Bioconjug Chem. 2019;30:400–4.

    Article  CAS  PubMed  Google Scholar 

  44. Allolio C, Magarkar A, Jurkiewicz P, Baxová K, Javanainen M, Mason PE, et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc Natl Acad Sci. 2018;115:11923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Monnery BD. Polycation-mediated transfection: Mechanisms of internalization and intracellular trafficking. Biomacromol. 2021;22:4060–83.

    Article  CAS  Google Scholar 

  46. van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of inflammation by extracellular granzyme A. Front Immunol. 2020;11:1–11.

    CAS  Google Scholar 

  47. Hink-Schauer C, Estébanez-Perpiñá E, Kurschus FC, Bode W, Jenne DE. Crystal structure of the apoptosis-inducing human granzyme a dimer. Nat Struct Biol. 2003;10:535–40.

    Article  CAS  PubMed  Google Scholar 

  48. Bots M, Medema JP. Granzymes at a glance. J Cell Sci. 2006;119:5011–4.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368:7548.

    Article  CAS  Google Scholar 

  50. Grodzovski I, Lichtenstein M, Galski H, Lorberboum-Galski H. IL-2-granzyme A chimeric protein overcomes multidrug resistance (MDR) through a caspase 3-independent apoptotic pathway. Int J Cancer. 2011;128:1966–80.

    Article  CAS  PubMed  Google Scholar 

  51. Garzón-Tituaña M, Sierra-Monzón JL, Comas L, Santiago L, Khaliulina-Ushakova T, Uranga-Murillo I, et al. Granzyme A inhibition reduces inflammation and increases survival during abdominal sepsis. Theranostics. 2021;11:3781–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURE

The authors acknowledge Dr. James Chambers and the Light Microscopy Core Facility, and Dr. Amy Burnside and the Flow Cytometry Core Facility at UMass Amherst. The authors declare no competing financial interests.

Funding

This research was supported by the NIH (EB022641 and DK121351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Rotello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luther, D.C., Nagaraj, H., Goswami, R. et al. Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies. Pharm Res 39, 1197–1204 (2022). https://doi.org/10.1007/s11095-022-03226-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03226-w

KEY WORDS

Navigation