Skip to main content
Log in

A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Polysorbates (PS) contain polyoxyethylene (POE) sorbitan/isosorbide fatty acid esters that can partially hydrolyze over time in liquid drug products to generate degradants and a remaining intact PS fraction with a modified ester distribution. The degradants are composed of free fatty acids (FFAs) –-primarily lauric acid for PS20 and oleic acid for PS80–- and POE head groups. We previously demonstrated that under IV bag agitation conditions, mAb1 (a surface-active IgG4) aggregation increased with increasing amounts of degradants for PS20 but not for PS80. The purpose of this work is to understand the mechanism behind this observation.

Methods

The surface tension of the remaining intact PS fraction without degradants was modeled and compared with that of enzymatically degraded PS solutions. Next, mAb1 aggregation in saline was measured in the presence of laurate and oleate salts during static storage. Lastly, colloidal and conformational stability of mAb1 in the presence of these salts was investigated through differential scanning fluorimetry and dynamic light scattering under IV bag solution conditions.

Results

The surface tension was primarily influenced by FFAs rather than the modified ester distribution of the remaining intact PS. MAb1 bulk aggregation increased in the presence of laurate but not oleate salts. Both salt types increased the melting temperature of mAb1 indicating FFA-mAb1 interactions. However, only laurate salt increased mAb1 self-association potentially explaining the higher aggregation propensity in its presence.

Conclusion

Our results help explain the observed differences between hydrolytically degraded PS20 and PS80 in affecting mAb1 aggregation under IV bag agitation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li J, Krause ME, Chen X, Cheng Y, Dai W, Hill JJ, et al. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective. AAPS J. 2019;21(3):44.

    Article  PubMed  Google Scholar 

  2. Shieh IC, Patel AR. Predicting the agitation-induced aggregation of monoclonal antibodies using surface tensiometry. Mol Pharm. 2015;12(9):3184–93.

    Article  CAS  PubMed  Google Scholar 

  3. Sreedhara A, Glover ZK, Piros N, Xiao N, Patel A, Kabakoff B. Stability of IgG1 monoclonal antibodies in intravenous infusion bags under clinical in-use conditions. J Pharm Sci. 2012;101(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  4. Mahler H-C, Friess W, Grauschopf U, Kiese S. Protein aggregation: Pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  CAS  PubMed  Google Scholar 

  5. Rudiuk S, Cohen-Tannoudji L, Huille S, Tribet C. Importance of the dynamics of adsorption and of a transient interfacial stress on the formation of aggregates of IgG antibodies. Soft Matter. 2012;8(9):2651–61.

    Article  CAS  Google Scholar 

  6. Kannan A, Shieh IC, Leiske DL, Fuller GG. Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence. Langmuir. 2018;34(2):630–8.

    Article  CAS  PubMed  Google Scholar 

  7. Perez M, Maiguy-Foinard A, Barthélémy C, Décaudin B, Odou P. Particulate Matter in Injectable Drugs: Evaluation of Risks to Patients. Pharm Technol Hosp Pharm. 2016;1(2):91–103.

    Google Scholar 

  8. Mathonet S, Mahler H-C, Esswein ST, Mazaheri M, Cash PW, Wuchner K, et al. A Biopharmaceutical Industry Perspective on the Control of Visible Particles in Biotechnology-Derived Injectable Drug Products. PDA J Pharm Sci Technol. 2016;70(4):392–408.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg AS. Effects of protein aggregates: An immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koepf E, Eisele S, Schroeder R, Brezesinski G, Friess W. Notorious but not understood: How liquid-air interfacial stress triggers protein aggregation. Int J Pharm. 2018;537(1):202–12.

    Article  CAS  PubMed  Google Scholar 

  11. Ghazvini S, Kalonia C, Volkin DB, Dhar P. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb. J Pharm Sci. 2016;105(5):1643–56.

    Article  CAS  PubMed  Google Scholar 

  12. Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63(13):1160–71.

    Article  CAS  PubMed  Google Scholar 

  13. Khan TA, Mahler H-C, Kishore RSK. Key interactions of surfactants in therapeutic protein formulations: A review. Eur J Pharm Biopharm. 2015;97:60–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kannan A, Shieh IC, Hristov P, Fuller GG. In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags. J Pharm Sci. 2021;110(4):1687–92.

    Article  CAS  PubMed  Google Scholar 

  15. Kerwin BA. Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang R, Wang Y, Tan L, Zhang HY, Yang M. Analysis of Polysorbate 80 and its Related Compounds by RP-HPLC with ELSD and MS Detection. J Chromatogr Sci. 2012;50(7):598–607.

    Article  CAS  PubMed  Google Scholar 

  17. Arnim Cumme G, Blume E, Bublitz R, Hoppe H, Horn A. Composition analysis of detergents of the polyoxyethylene type: comparison of thin-layer chromatography, reversed-phase chromatography and matrix-assisted laser desorption/ionization mass spectrometry. J Chromatogr A. 1997;791(1):245–53.

    Article  CAS  Google Scholar 

  18. Li Y, Hewitt D, Lentz YK, Ji JA, Zhang TY, Zhang K. Characterization and Stability Study of Polysorbate 20 in Therapeutic Monoclonal Antibody Formulation by Multidimensional Ultrahigh-Performance Liquid Chromatography-Charged Aerosol Detection-Mass Spectrometry. Anal Chem. 2014;86(10):5150–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tomlinson A, Zarraga IE, Demeule B. Characterization of Polysorbate Ester Fractions and Implications in Protein Drug Product Stability. Mol Pharm. 2020;17(7):2345–53.

    Article  CAS  PubMed  Google Scholar 

  20. Hewitt D, Alvarez M, Robinson K, Ji J, Wang YJ, Kao Y-H, et al. Mixed-mode and reversed-phase liquid chromatography–tandem mass spectrometry methodologies to study composition and base hydrolysis of polysorbate 20 and 80. J Chromatogr A. 2011;1218(15):2138–45.

    Article  CAS  PubMed  Google Scholar 

  21. Doshi N, Giddings J, Luis L, Wu A, Ritchie K, Liu W, et al. A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation. Pharm Res. 2021;38(3):531–48.

    Article  CAS  PubMed  Google Scholar 

  22. Chiu J, Valente KN, Levy NE, Min L, Lenhoff AM, Lee KH. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng. 2017;114(5):1006–15.

    Article  CAS  PubMed  Google Scholar 

  23. Dixit N, Salamat-Miller N, Salinas PA, Taylor KD, Basu SK. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles. J Pharm Sci. 2016;105(5):1657–66.

    Article  CAS  PubMed  Google Scholar 

  24. Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int J Pharm. 2018;552(1):422–36.

    Article  CAS  PubMed  Google Scholar 

  25. Labrenz SR. Ester Hydrolysis of Polysorbate 80 in mAb Drug Product: Evidence in Support of the Hypothesized Risk After the Observation of Visible Particulate in mAb Formulations. J Pharm Sci. 2014;103(8):2268–77.

    Article  CAS  PubMed  Google Scholar 

  26. Saggu M, Liu J, Patel A. Identification of Subvisible Particles in Biopharmaceutical Formulations Using Raman Spectroscopy Provides Insight into Polysorbate 20 Degradation Pathway. Pharm Res. 2015;32(9):2877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomlinson A, Demeule B, Lin B, Yadav S. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism. Mol Pharm. 2015;12(11):3805–15.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Xiao H, Molden R, Qiu H, Li N. Rapid Polysorbate 80 Degradation by Liver Carboxylesterase in a Monoclonal Antibody Formulated Drug Substance at Early Stage Development. J Pharm Sci. 2020;109(11):3300–7.

    Article  CAS  PubMed  Google Scholar 

  29. Graf T, Tomlinson A, Yuk IH, Kufer R, Spensberger B, Falkenstein R, et al. Identification and Characterization of Polysorbate-Degrading Enzymes in a Monoclonal Antibody Formulation. J Pharm Sc. 2021 [cited 2021 Aug 8]; Available from: https://www.sciencedirect.com/science/article/pii/S0022354921003531

  30. McShan AC, Kei P, Ji JA, Kim DC, Wang YJ. Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases. PDA J Pharm Sci Technol. 2016;70(4):332–45.

    Article  CAS  PubMed  Google Scholar 

  31. Kannan A, Shieh IC, Fuller GG. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. J Colloid Interface Sci. 2019;550:128–38.

    Article  CAS  PubMed  Google Scholar 

  32. Vargo KB, Stahl P, Hwang B, Hwang E, Giordano D, Randolph P, et al. Surfactant Impact on Interfacial Protein Aggregation and Utilization of Surface Tension to Predict Surfactant Requirements for Biological Formulations. Mol Pharm. 2021;18(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  33. McBain JW, Sierichs WC. The solubility of sodium and potassium soaps and the phase diagrams of aqueous potassium soaps. J Am Oil Chem Soc. 1948;25(6):221–5.

    Article  CAS  Google Scholar 

  34. Glücklich N, Dwivedi M, Carle S, Buske J, Mäder K, Garidel P. An in-depth examination of fatty acid solubility limits in biotherapeutic protein formulations containing polysorbate 20 and polysorbate 80. Int J Pharm. 2020;591:119934.

    Article  PubMed  Google Scholar 

  35. Doshi N, Demeule B, Yadav S. Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations. Mol Pharm. 2015;12(11):3792–804.

    Article  CAS  PubMed  Google Scholar 

  36. Doshi N, Martin J, Tomlinson A. Improving Prediction of Free Fatty Acid Particle Formation in Biopharmaceutical Drug Products: Incorporating Ester Distribution during Polysorbate 20 Degradation. Mol Pharm. 2020;17(11):4354–63.

    Article  CAS  PubMed  Google Scholar 

  37. Chumpitaz LDA, Coutinho LF, Meirelles AJA. Surface tension of fatty acids and triglycerides. J Am Oil Chem Soc. 1999;76(3):379–82.

    Article  CAS  Google Scholar 

  38. Niebling S, Burastero O, Bürgi J, Günther C, Defelipe LA, Sander S, et al. FoldAffinity: binding affinities from nDSF experiments. Sci Rep. 2021;11(1):9572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2(9):2212–21.

    Article  CAS  PubMed  Google Scholar 

  40. Vivoli M, Novak HR, Littlechild JA, Harmer NJ. Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry. J Vis Exp JoVE. 2014;91:51809.

    Google Scholar 

  41. Wu W-I, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal Structure of Human AKT1 with an Allosteric Inhibitor Reveals a New Mode of Kinase Inhibition. PLOS One. 2010;5(9):e12913.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dejonghe W, Sharma I, Denoo B, De Munck S, Lu Q, Mishev K, et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat Chem Biol. 2019;15(6):641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Zhang C. Using Differential Scanning Fluorimetry (DSF) to Detect Ligand Binding with Purified ProteinPurified proteins. In: Hicks GR, Zhang C, editors. Plant Chemical Genomics: Methods and Protocols. New York, NY: Springer US; 2021 [cited 2021 Sep 16]. p. 183–6. (Methods in Molecular Biology). Available from: https://doi.org/10.1007/978-1-0716-0954-5_16

  44. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, et al. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Cell. 2016;165(3):643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci. 2020;109(1):169–90.

    Article  PubMed  Google Scholar 

  46. Hoffmann C, Blume A, Miller I, Garidel P. Insights into protein–polysorbate interactions analysed by means of isothermal titration and differential scanning calorimetry. Eur Biophys J. 2009;38(5):557–68.

    Article  CAS  PubMed  Google Scholar 

  47. Garidel P, Hoffmann C, Blume A. A thermodynamic analysis of the binding interaction between polysorbate 20 and 80 with human serum albumins and immunoglobulins: A contribution to understand colloidal protein stabilisation. Biophys Chem. 2009;143(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  48. Singh SM, Bandi S, Jones DNM, Mallela KMG. Effect of Polysorbate 20 and Polysorbate 80 on the Higher Order Structure of a Monoclonal Antibody and its Fab and Fc Fragments Probed Using 2D NMR Spectroscopy. J Pharm Sci. 2017;106(12):3486–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldberg DS, Bishop SM, Shah AU, Sathish HA. Formulation Development of Therapeutic Monoclonal Antibodies Using High-Throughput Fluorescence and Static Light Scattering Techniques: Role of Conformational and Colloidal Stability. J Pharm Sci. 2011;100(4):1306–15.

    Article  CAS  PubMed  Google Scholar 

  50. Lang BE, Cole KD. Differential scanning calorimetry and fluorimetry measurements of monoclonal antibodies and reference proteins: Effect of scanning rate and dye selection. Biotechnol Prog. 2017;33(3):677–86.

    Article  CAS  PubMed  Google Scholar 

  51. Sindrewicz P, Li X, Yates EA, Turnbull JE, Lian L-Y, Yu L-G. Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Sci Rep. 2019;9(1):11851.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JMR, et al. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J. 2012;103(1):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rubin J, Linden L, Coco WM, Bommarius AS, Behrens SH. Salt-induced aggregation of a monoclonal human immunoglobulin G1. J Pharm Sci. 2013;102(2):377–86.

    Article  CAS  PubMed  Google Scholar 

  54. Mehta SB, Carpenter JF, Randolph TW. Colloidal instability fosters agglomeration of subvisible particles created by rupture of gels of a monoclonal antibody formed at silicone oil-water interfaces. J Pharm Sci. 2016;105(8):2338–48.

    Article  CAS  PubMed  Google Scholar 

  55. Siska CC, Pierini CJ, Lau HR, Latypov RF, Matthew Fesinmeyer R, Litowsk JR. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material. J Pharm Sci. 2015;104(2):447–56.

    Article  CAS  PubMed  Google Scholar 

  56. Small DM. Lateral chain packing in lipids and membranes. J Lipid Res. 1984;25(13):1490–500.

    Article  CAS  PubMed  Google Scholar 

  57. Tavakoli-Keshe R, Phillips JJ, Turner R, Bracewell DG. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4. J Pharm Sci. 2014;103(2):437–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Inn Yuk, Sreedhara Alavattam, Jasper Lin and Jonathan Zarzar for feedback and discussions. The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Doshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.35 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, A., Giddings, J., Mehta, S. et al. A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions. Pharm Res 39, 563–575 (2022). https://doi.org/10.1007/s11095-022-03217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03217-x

KEY WORDS

Navigation