Skip to main content

Advertisement

Log in

Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Methicillin-resistant Staphylococcus aureus (MRSA) infection at impaired wound is associated with high risks of developing to persistent bacterial infections since bacterial biofilm is easy to form in MRSA infected wounds. An advanced therapeutic approach to effectively penetrate and eliminate bacterial biofilm and to accelerate cell proliferation and migration at the wound is crucial.

Methods

The poly(ε-caprolactone)-monomethoxyl poly (ethylene glycol) (PCL-mPEG) micelles loaded with Quercetin and Rifampicin (QRMs) were prepared. Bacterial biofilm proliferation and elimination effect of QRMs were evaluated with confocal laser scanning microscopy. Antibacterial assay was further performed to detect antibacterial activity and mechanism. The cell scratch assay and cellular uptake were performed in HaCaT skin epithelial cells.

Results

Our results showed that the small sized QRMs could penetrate the interior of MRSA biofilm to disperse and eradicate biofilm. Then, antibiotics are released and accumulated in the acidic biofilm environment. QRMs could kill bacteria through increasing bacterial membrane permeability and altering membrane potential and membrane fluidity. Moreover, QRMs improved intracellular and cytoplasmic delivery efficiency of drugs to epithelial cells, and in the scratch test, presented a stronger ability to promote migration and proliferation of HaCaT cells compared with free drugs. Hemolysis test further proved good biocompatibility of QRMs.

Conclusions

QRMs could potentially be used as a novel dual-functional nanotherapeutic for anti-bacterial infection by eradicating biofilm and accelerating cells proliferation at MRSA infected wound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C6:

Coumarin 6

CMs:

Coumarin 6 loaded micelles

CV:

Crystal violet

DLS:

Dynamic light scattering spectroscopy

EM:

Empty micelles

EPS:

Extracellular polymeric substances

GP:

Generalized polarization

HaCaT:

Human epidermal keratinocyte line

MRSA:

Methicillin-resistant Staphylococcus aureus

MβCD:

Methyl-β-cyclodextrine

PCL-mPEG:

Poly(ε-caprolactone)-monomethoxyl poly (ethylene glycol)

QR:

Combination of quercetin and rifampicin

QRMs:

Quercetin and rifampicin loaded micelles

Que:

Quercetin

Rif:

Rifampicin

ROS:

Reactive oxygen species

TEM:

Transmission electron microscope

References

  1. O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annual Reviews in Microbiology. 2000;54(1):49–79.

    Article  CAS  Google Scholar 

  2. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 2014;513(7518):418–21.

    Article  CAS  PubMed  Google Scholar 

  3. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11(9):692–701.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Organization WH. Antibiotic resistance: Multi-country public awareness survey. 2015.

  5. Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, Wang Y, Zhang Z, Zhang Y, Guo W. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat Commun. 2019;10(1):1–12.

    Article  CAS  Google Scholar 

  6. Dryden M, Baguneid M, Eckmann C, Corman S, Stephens J, Solem C, Li J, Charbonneau C, Baillon-Plot N, Haider S. Pathophysiology and burden of infection in patients with diabetes mellitus and peripheral vascular disease: focus on skin and soft-tissue infections. Clin Microbiol Infect. 2015;21:S27–32.

    Article  PubMed  Google Scholar 

  7. Kalligeros M, Shehadeh F, Karageorgos SA, Zacharioudakis IM, Mylonakis E. MRSA colonization and acquisition in the burn unit: A systematic review and meta-analysis. Burns. 2019;45(7):1528–36.

    Article  PubMed  Google Scholar 

  8. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler VG. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen M, Xie S, Wei J, Song X, Ding Z, Li X. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics. ACS Appl Mater Interfaces. 2018;10(43):36814–23.

    Article  CAS  PubMed  Google Scholar 

  10. Xi Y, Song T, Tang S, Wang N, Du J. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromol. 2016;17(12):3922–30.

    Article  CAS  Google Scholar 

  11. Albright V, Xu M, Palanisamy A, Cheng J, Stack M, Zhang B, Jayaraman A, Sukhishvili SA, Wang H. Micelle-coated, hierarchically structured nanofibers with dual-release capability for accelerated wound healing and infection control. Adv Healthcare Mater. 2018;7(11):1800132.

    Article  CAS  Google Scholar 

  12. Hu C, Zhang F, Long L, Kong Q, Luo R, Wang Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J Control Release. 2020;324:204–17.

    Article  CAS  PubMed  Google Scholar 

  13. Yokoyama M. Polymeric micelles as drug carriers: their lights and shadows. J Drug Target. 2014;22(7):576–83.

    Article  CAS  PubMed  Google Scholar 

  14. Peulen T-O, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ Sci Technol. 2011;45(8):3367–73.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Zhang K, Ruan L, Chin SF, Wickramasinghe N, Liu H, Ravikumar V, Ren J, Duan H, Yang L. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 2018;18(7):4180–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tian S, Su L, Liu Y, Cao J, Yang G, Ren Y, Huang F, Liu J, An Y, van der Mei HC. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—An intravital imaging study in mice. Science advances. 2020;6(33):eabb1112.

  17. Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, Ren Y, Shi L. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano. 2016;10(4):4779–89.

    Article  CAS  PubMed  Google Scholar 

  18. Guo P, Xue HY, Buttaro BA, Tran NT, Wong HL. Enhanced eradication of intracellular and biofilm-residing methicillin-resistant Staphylococcus aureus (MRSA) reservoirs with hybrid nanoparticles delivering rifampicin. International Journal of Pharmaceutics. 2020;589:119784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunne WM Jr, Mason EO Jr, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 1993;37(12):2522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farooq U, Ahmad T, Khan A, Sarwar R, Shafiq J, Raza Y, Ahmed A, Ullah S, Rehman NU, Al-Harrasi A. Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae. Int J Nanomed. 2019;14:3983.

    Article  CAS  Google Scholar 

  21. Zimmerli W, Sendi P. Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 2019;63(2):e01746-e1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010;23(1):14–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polerà N, Badolato M, Perri F, Carullo G, Aiello F. Quercetin and its natural sources in wound healing management. Curr Med Chem. 2019;26(31):5825–48.

    Article  PubMed  CAS  Google Scholar 

  24. Song J-Y, Yang B-S. Quercetin shows the pharmacological activity to simultaneously downregulate the inflammatory and fibrotic responses to tissue injury in association with its ability to target multi-kinases. Pharmacology. 2018;102:142–53.

    Article  CAS  PubMed  Google Scholar 

  25. Yin G, Wang Z, Wang Z, Wang X. Topical application of quercetin improves wound healing in pressure ulcer lesions. Exp Dermatol. 2018;27(7):779–86.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed OM, Mohamed T, Moustafa H, Hamdy H, Ahmed RR, Aboud E. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmacother. 2018;101:58–73.

    Article  CAS  PubMed  Google Scholar 

  27. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1):1700447.

    Article  CAS  Google Scholar 

  28. Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. small. 2010;6(1):12–21.

  29. Cui C, Xue Y-N, Wu M, Zhang Y, Yu P, Liu L, Zhuo R-X, Huang S-W. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials. 2013;34(15):3858–69.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Xiong X, Wan J, Xiao L, Gan L, Feng Y, Xu H, Yang X. Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles. Biomaterials. 2012;33(29):7233–40.

    Article  CAS  PubMed  Google Scholar 

  31. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  32. Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, Li J, Thamphiwatana S, Lu D, Zhang L. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano. 2014;8(3):2900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmid-Wendtner M-H, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin pharmacology and physiology. 2006;19(6):296–302.

    Article  PubMed  Google Scholar 

  34. Ang LF, Yam MF, Fung YTT, Kiang PK, Darwin Y. HPLC method for simultaneous quantitative detection of quercetin and curcuminoids in traditional chinese medicines. Journal of pharmacopuncture. 2014;17(4):36.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goutal S, Auvity S, Legrand T, Hauquier F, Cisternino S, Chapy H, Saba W, Tournier N. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient. J Pharm Biomed Anal. 2016;123:173–8.

    Article  CAS  PubMed  Google Scholar 

  36. Xiong M-H, Bao Y, Yang X-Z, Zhu Y-H, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.

    Article  CAS  PubMed  Google Scholar 

  37. Patel J, Weinstein M, Eliopoulos G, Jenkins S, Lewis J, Limbago B. M100 Performance standards for antimicrobial susceptibility testing. United State: Clinical and Laboratory Standards Institute. 2017;240.

  38. Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, Kaji T, Kuranaga T, Hamase K, Katsu T. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015;11(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Chen Z, Wang J, Li R, Li T, Chang M, Yan F, Wang Y. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mater Interfaces. 2018;10(19):16315–26.

    Article  CAS  PubMed  Google Scholar 

  40. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci. 2015;112(10):2978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Angiolini L, Agnes M, Cohen B, Yannakopoulou K, Douhal A. Formation, characterization and pH dependence of rifampicin: heptakis (2, 6-di-O-methyl)-β-cyclodextrin complexes. Int J Pharm. 2017;531(2):668–75.

    Article  CAS  PubMed  Google Scholar 

  42. Khan MF, Rita SA, Kayser M, Islam M, Asad S, Bin Rashid R, Bari M, Rahman MM, Aman A, Anwar D. Theoretically guided analytical method development and validation for the estimation of rifampicin in a mixture of isoniazid and pyrazinamide by UV spectrophotometer. Front Chem. 2017;5:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sengupta B, Sengupta PK. The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study. Biochem Biophys Res Commun. 2002;299(3):400–3.

    Article  CAS  PubMed  Google Scholar 

  44. Mehranfar F, Bordbar A-K, Parastar H. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles. J Photochem Photobiol, B. 2013;127:100–7.

    Article  CAS  Google Scholar 

  45. Abee T, Kovács ÁT, Kuipers OP, Van der Veen S. Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol. 2011;22(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  46. Min J, Choi KY, Dreaden EC, Padera RF, Braatz RD, Spector M, Hammond PT. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano. 2016;10(4):4441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates III JR, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS pathogens. 2012;8(4):e1002623.

  48. Shafahi M, Vafai K. Biofilm affected characteristics of porous structures. Int J Heat Mass Transf. 2009;52(3–4):574–81.

    Article  CAS  Google Scholar 

  49. Li Y, Liu G, Wang X, Hu J, Liu S. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew Chem Int Ed. 2016;55(5):1760–4.

    Article  CAS  Google Scholar 

  50. Liu Y, Ding S, Dietrich R, Märtlbauer E, Zhu K. A biosurfactant-inspired heptapeptide with improved specificity to kill MRSA. Angew Chem. 2017;129(6):1508–12.

    Article  Google Scholar 

  51. Oh G-S, Kim H-J, Choi J-H, Shen A, Choe S-K, Karna A, Lee SH, Jo H-J, Yang S-H, Kwak TH. Pharmacological activation of NQO1 increases NAD+ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 2014;85(3):547–60.

    Article  CAS  PubMed  Google Scholar 

  52. Farha MA, Verschoor CP, Bowdish D, Brown ED. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem Biol. 2013;20(9):1168–78.

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez SA, Tricerri MA, Gratton E. Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci. 2012;109(19):7314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Strahl H, Errington J. Bacterial membranes: structure, domains, and function. Annu Rev Microbiol. 2017;71:519–38.

    Article  CAS  PubMed  Google Scholar 

  55. Jeffet U, Shimon R, Sterer N. Effect of high intensity blue light on fusobacterium nucleatum membrane integrity. Photochem Photobiol. 2020;96(1):178–81.

    Article  CAS  PubMed  Google Scholar 

  56. Imlay JA. Pathways of oxidative damage. Annual Reviews in Microbiology. 2003;57(1):395–418.

    Article  CAS  Google Scholar 

  57. Hlaing SP, Kim J, Lee J, Hasan N, Cao J, Naeem M, Lee EH, Shin JH, Jung Y, Lee B-L. S-Nitrosoglutathione loaded poly (lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds. Eur J Pharm Biopharm. 2018;132:94–102.

    Article  CAS  PubMed  Google Scholar 

  58. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W. Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics. 2019;11(5):236.

    Article  CAS  PubMed Central  Google Scholar 

  59. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Zhang G, Le Y, Ju J, Zhang P, Wan D, Zhao Q, Jin G, Su H, Liu J. Quercetin promotes human epidermal stem cell proliferation through the estrogen receptor/β-catenin/c-Myc/cyclin A2 signaling pathway. Acta Biochim Biophys Sin. 2020;52(10):1102–10.

    Article  CAS  PubMed  Google Scholar 

  61. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.

    Article  CAS  PubMed  Google Scholar 

  62. He Z, Liu K, Manaloto E, Casey A, Cribaro GP, Byrne HJ, Tian F, Barcia C, Conway GE, Cullen PJ. Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death. Sci Rep. 2018;8(1):1–11.

    Google Scholar 

  63. Bouley R, Yui N, Terlouw A, Cheung PW, Brown D. Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells. Cells. 2020;9(4):1057.

    Article  CAS  PubMed Central  Google Scholar 

  64. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10(6):839–50.

    Article  CAS  PubMed  Google Scholar 

  65. Pelkmans L. Secrets of caveolae-and lipid raft-mediated endocytosis revealed by mammalian viruses. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2005;1746(3):295–304.

  66. Zhang F, Guo H, Zhang J, Chen Q, Fang Q. Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology. 2018;513:195–207.

    Article  CAS  PubMed  Google Scholar 

  67. Lin H, Wang Q, Zhong R, Li Z, Zhao W, Chen Y, Tian M, Luo X. Biomimetic phosphorylcholine strategy to improve the hemocompatibility of pH-responsive micelles containing tertiary amino groups. Colloids and Surfaces B: Biointerfaces. 2019;184:110545.

  68. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5(7):5717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhen Z, Liu X, Huang T, Xi T, Zheng Y. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater Sci Eng, C. 2015;46:202–6.

    Article  CAS  Google Scholar 

  70. Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc. 2013;53(1–2):23–37.

    Article  PubMed  CAS  Google Scholar 

  71. Tian Y, Tian Z, Dong Y, Wang X, Zhan L. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv. 2021;11(12):6958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest to declare that are relevant to the content of this article. The laboratory animals (mice) used in our experiments were in accordance with the relevant Chinese laws and according to the China Agriculture University regulations concerning protection of animals used for scientific purposes (2010-SYXK-0037). The mice used in this study were approved by the Ethics Committee on Experimental Animals and Animal Tests of China Agricultural University. The review number is AW22011202-2-1.

Funding

This research was supported by the National Key Research and Development Program of China (No: 2021YFD1801000). Chinese National Natural Science Foundation project (No: 31971312 and No: 32171389), China Agriculture Research System of MOF and MARA (CARS-36), and the 2115 Talent Development Program of China Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Jie Liang or Xiaowei Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhao, Q., Han, J. et al. Dual Drug Loaded pH-sensitive Micelles for Efficient Bacterial Infection Treatment. Pharm Res 39, 1165–1180 (2022). https://doi.org/10.1007/s11095-022-03182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03182-5

Keywords

Navigation