Skip to main content

Advertisement

Log in

The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics.

Method

In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke.

Results

NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 μM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%.

Conclusion

As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: Heart disease and stroke statistics-2016 update: A Report from the American Heart Association. Vol. 133, Circulation. Lippincott Williams and Wilkins; 2016. p. 447–54.

  2. Price-Haywood EG, Harden-Barrios J, Carr C, Reddy L, Bazzano LA, van Driel ML. Patient-reported outcomes in stroke clinical trials 2002–2016: A systematic review [Internet]. Vol. 28, Quality of Life Research. Springer International Publishing; 2019 [cited 2020 Oct 7]. p. 1119–28. Available from: https://doi.org/10.1007/s11136-018-2053-7.

  3. Kim JS. tPA helpers in the treatment of acute ischemic stroke: Are they ready for clinical use? J Stroke [Internet]. 2019 [cited 2020 Oct 7];21(2):160–74. Available from: /pmc/articles/PMC6549064/?report=abstract.

  4. Shi H, Liu KJ. Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci [Internet]. 2007 [cited 2020 Oct 2];12(4):1318–28. Available from: https://pubmed-ncbi-nlm-nih-gov.www.libproxy.wvu.edu/17127384/

  5. Gravanis I, Tsirka SE. Tissue-type plasminogen activator as a therapeutic target in stroke [Internet]. Vol. 12, Expert Opinion on Therapeutic Targets. NIH Public Access; 2008 [cited 2020 Oct 7]. p. 159–70. Available from: /pmc/articles/PMC3824365/?report=abstract.

  6. Choi JH, Pile-Spellman J. Reperfusion Changes After Stroke and Practical Approaches for Neuroprotection [Internet]. Vol. 28, Neuroimaging Clinics of North America. W.B. Saunders; 2018 [cited 2020 Oct 7]. p. 663–82. Available from: https://pubmed-ncbi-nlm-nih-gov.www.libproxy.wvu.edu/30322601/

  7. Wu M-Y, Yiang G-T, Liao W-T, Tsai AP-Y, Cheng Y-L, Cheng P-w, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.

    Article  CAS  Google Scholar 

  8. Raslan A, Bhardwaj A. Medical management of cerebral edema. Vol. 22, Neurosurgical focus. 2007.

  9. Jha SK. Cerebral edema and its management. Med J Armed Forces India [Internet]. 2003 [cited 2020 Oct 7];59(4):326–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923559/

  10. Green AR. Pharmacological approaches to acute ischaemic stroke: Reperfusion certainly, neuroprotection possibly. In: British Journal of Pharmacology [Internet]. Wiley-Blackwell; 2008 [cited 2020 Oct 7]. p. S325. Available from: /pmc/articles/PMC2268079/?report=abstract.

  11. Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, et al. Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol - Endocrinol Metab [Internet]. 2003 [cited 2017 Jun 10];286(2). Available from: http://ajpendo.physiology.org/content/286/2/E252.long

  12. Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, et al. MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci U S A. 104(36):14342–7.

  13. Asako Kounosu T, Iwasaki, Seiki Baba Y, Hayashi-Iwasaki, Tairo Oshima T, Kumasaka. Crystallization and preliminary X-ray diffraction studies of the prototypal homologue of mitoNEET (Tth-NEET0026) from the extreme thermophile Thermus thermophilus HB8. Struct Biol Cryst Commun. 2008;64(12):1146–8.

    Article  Google Scholar 

  14. Nechushtai R, Conlan AR, Harir Y, Song L, Yogev Ohad, Eisenberg-Domovich Y, et al. Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism. Plant Cell [Internet]. 2012 May [cited 2020 Oct 7];24(5):2139–54. Available from: /pmc/articles/PMC3442592/?report=abstract.

  15. Inupakutika MA, Sengupta S, Nechushtai R, Jennings PA, Onuchic JN, Azad RK, et al. Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates. Sci Rep [Internet]. 2017 16 [cited 2020 Oct 7];7. Available from: https://pubmed.ncbi.nlm.nih.gov/28205535/

  16. He Q-Q, Xiong L-L, Liu F, He X, Feng G-Y, Shang F-F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep [Internet]. 2016 Oct 17 [cited 2017 Jan 17];6:35205. Available from: http://www.nature.com/articles/srep35205

  17. Yonutas HM, Hubbard WB, Pandya JD, Vekaria HJ, Geldenhuys WJ, Sullivan PG. Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury. Vol. 327, Experimental Neurology. Academic Press Inc.; 2020. p. 113243.

  18. Shi G, Cui L, Chen R, Liang S, Wang C, Wu P. TT01001 attenuates oxidative stress and neuronal apoptosis by preventing mitoNEET-mediated mitochondrial dysfunction after subarachnoid hemorrhage in rats. Neuroreport. 2020;31(11):845–50.

    CAS  PubMed  Google Scholar 

  19. Geldenhuys WJ, Benkovic SA, Lin L, Yonutas HM, Crish SD, Sullivan PG, et al. MitoNEET (CISD1) knockout mice show signs of striatal mitochondrial dysfunction and a Parkinson’s disease phenotype. ACS Chem Neurosci. 2017;8(12):2759–65.

    Article  CAS  Google Scholar 

  20. Saralkar P, Arsiwala T, Geldenhuys WJ. Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury. Int J Pharm. 2020;578:119090.

    Article  CAS  Google Scholar 

  21. Wang L, Niu Y, He G, Wang J. Down-regulation of lncRNA GAS5 attenuates neuronal cell injury through regulating miR-9/FOXO3 axis in cerebral ischemic stroke. RSC Adv [Internet]. 2019 May 23 [cited 2019 Sep 2];9(28):16158–66. Available from: http://xlink.rsc.org/?DOI=C9RA01544B

  22. Zhao M, Wang J, Xi X, Tan N, Zhang L. SNHG12 Promotes Angiogenesis Following Ischemic Stroke via Regulating miR-150/VEGF Pathway. Neuroscience [Internet]. 2018 Oct 15 [cited 2019 Sep 2];390:231–40. Available from: https://www.sciencedirect.com/science/article/pii/S0306452218305748

  23. Minaei Beyrami S, Khadem Ansari MH, Rasemi Y, Shakib N, Karimi P. Complete inhibition of phosphatase and tensin homolog promotes the normal and oxygen-glucose deprivation/reperfusion-injured PC12 cells to cell death. J Cardiovasc Thorac Res [Internet]. 2018 [cited 2019 Sep 2];10(2):83–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30116506.

  24. Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage [Internet]. Vol. 84, Biochemistry (Moscow). Pleiades Publishing; 2019 [cited 2021 Apr 8]. p. 1411–23. Available from: https://link-springer-com.wvu.idm.oclc.org/article/10.1134/S0006297919110154

  25. Ten V, Galkin A. Mechanism of mitochondrial complex I damage in brain ischemia/reperfusion injury. A hypothesis. Vol. 100, Molecular and Cellular Neuroscience. Academic Press Inc.; 2019. p. 103408.

  26. Andrabi SS, Ali M, Tabassum H, Parveen S, Parvez S. Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. DMM Dis Model Mech [Internet]. 2019 [cited 2021 Apr 7];12(8). Available from: /pmc/articles/PMC6737958/.

  27. Hathaway QA, Nichols CE, Shepherd DL, Stapleton PA, McLaughlin SL, Stricker JC, et al. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol - Hear Circ Physiol [Internet]. 2017 Mar 1 [cited 2020 Oct 6];312(3):H446–58. Available from: https://europepmc.org/articles/PMC5402018

  28. Vongs A, Solly KJ, Kiss L, MacNeil DJ, Rosenblum CI. A miniaturized homogenous assay of mitochondrial membrane potential. Assay Drug Dev Technol [Internet]. 2011 Aug 1 [cited 2020 Oct 6];9(4):373–81. Available from: https://pubmed-ncbi-nlm-nih-gov.www.libproxy.wvu.edu/21294696/

  29. Saralkar P, Arsiwala T, Geldenhuys WJ. Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury. Int J Pharm. 2020 Mar 30;578:119090.

    Article  CAS  Google Scholar 

  30. Pedada KK, Zhou X, Jogiraju H, Carroll RT, Geldenhuys WJ, Lin L, et al. A quantitative LC?MS/MS method for determination of thiazolidinedione mitoNEET ligand NL-1 in mouse serum suitable for pharmacokinetic studies. J Chromatogr B [Internet]. 2014 Jan [cited 2017 Jun 14];945–946:141–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1570023213006685

  31. Geldenhuys WJ, Kochi A, Lin L, Sutariya V, Dluzen DE, Van Der Schyf CJ, et al. Methyl yellow: A potential drug scaffold for Parkinson’s disease. ChemBioChem [Internet]. 2014 Jul 21 [cited 2021 Apr 12];15(11):1591–8. Available from: https://pubmed-ncbi-nlm-nih-gov.wvu.idm.oclc.org/25045125/

  32. Mdzinarishvili A, Geldenhuys WJ, Abbruscato TJ, Bickel U, Klein J, Van Der Schyf CJ. NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia. Neurosci Lett. 2005;383(1–2):49–53.

    Article  CAS  Google Scholar 

  33. Park CK, Kang SG. Effects of brain oedema in the measurement of ischaemic brain damage in focal cerebral infarction. Acta Neurochir Suppl [Internet]. 2000 [cited 2020 Nov 10];76:269–71. Available from: https://link.springer.com/chapter/10.1007/978-3-7091-6346-7_55

  34. Weber RZ, Grönnert L, Mulders G, Maurer MA, Tackenberg C, Schwab ME, et al. Characterization of the Blood Brain Barrier Disruption in the Photothrombotic Stroke Model. Front Physiol [Internet]. 2020 Nov 12 [cited 2021 Jan 12];11. Available from: https://pubmed.ncbi.nlm.nih.gov/33262704/

  35. Hao J, Mdzinarishvili A, Abbruscato TJ, Klein J, Geldenhuys WJ, Van der Schyf CJ, et al. Neuroprotection in mice by NGP1–01 after transient focal brain ischemia. Brain Res [Internet]. 2008 Feb 27 [cited 2021 Apr 12];1196:113–20. Available from: https://pubmed-ncbi-nlm-nih-gov.wvu.idm.oclc.org/18234166/

  36. Scaduto RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1 I):469–77.

    Article  CAS  Google Scholar 

  37. Vilar S, Chakrabarti M, Costanzi S. Prediction of passive blood-brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J Mol Graph Model [Internet]. 2010 Jun [cited 2021 Apr 12];28(8):899–903. Available from: https://pubmed.ncbi.nlm.nih.gov/20427217/

  38. Geldenhuys WJ, Bloomquist JR. Development of an a priori computational approach for brain uptake of compounds in an insect model system. Bioorg Med Chem Lett [Internet]. 2021 May [cited 2021 Apr 12];40:127930. Available from: https://pubmed.ncbi.nlm.nih.gov/33711441/

  39. Tasnim H, Landry AP, Fontenot CR, Ding H. Exploring the FMN binding site in the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med. 2020;156:11–9.

    Article  CAS  Google Scholar 

  40. Geldenhuys WJ, Funk MO, Barnes KF, Carroll RT. Structure-based design of a thiazolidinedione which targets the mitochondrial protein mitoNEET. Bioorganic Med Chem Lett. 2010;20(3):819–23.

    Article  CAS  Google Scholar 

  41. Geldenhuys WJ, Leeper TC, Carroll RT. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today. 2014;19(10):1601–6.

    Article  CAS  Google Scholar 

  42. Geldenhuys WJ, Yonutas HM, Morris DL, Sullivan PG, Darvesh AS, Leeper TC. Identification of small molecules that bind to the mitochondrial protein mitoNEET. Vol. 26, Bioorganic & Medicinal Chemistry Letters. 2016.

  43. Lipper CH, Stofleth JT, Bai F, Sohn YS, Roy S, Mittler R, et al. Redox-dependent gating of VDAC by mitoNEET. Proc Natl Acad Sci U S A. 2019;116(40):19924–9.

    Article  CAS  Google Scholar 

  44. Landry AP, Ding H. Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide. J Biol Chem [Internet]. 2014 Feb 14 [cited 2017 Jun 11];289(7):4307–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24403080.

  45. Landry AP, Cheng Z DH. Reduction of mitochondrial protein mitoNEET[2Fe–2S] clusters by human glutathione reductase. Free Radic Biol Med. 81:119–27.

  46. Habener A, Chowdhury A, Echtermeyer F, Lichtinghagen R, Theilmeier G, Herzog C, et al. MitoNEET Protects HL-1 Cardiomyocytes from Oxidative Stress Mediated Apoptosis in an In Vitro Model of Hypoxia and Reoxygenation. Vanella L, editor. PLoS One [Internet]. 2016 [cited 2017 Jan 17];11(5):e0156054. Available from: https://doi.org/10.1371/journal.pone.0156054.

  47. Christine M Kusminski, William L Holland, Kai Sun, Jiyoung Park, Stephen B Spurgin YL, G Roger Askew, Judith A Simcox, Don A McClain CL& PES. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med. 18 (10):1539–49.

  48. Roberts ME, Crail JP, Laffoon MM, Fernandez WG, Menze MA KM. Identification of disulfide bond formation between MitoNEET and glutamate dehydrogenase 1. Biochemistry [Internet]. 52 (50),:8969–8971. Available from: https://pubs.acs.org/doi/10.1021/bi401038w

  49. Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, et al. Different roles of mitochondria in cell death and inflammation: Focusing on mitochondrial quality control in ischemic stroke and reperfusion [Internet]. Vol. 9, Biomedicines. MDPI AG; 2021 [cited 2021 Apr 12]. p. 1–28. Available from: https://pubmed.ncbi.nlm.nih.gov/33572080/

  50. Pittas K, Vrachatis DA, Angelidis C, Tsoucala S, Giannopoulos G, Deftereos S. The Role of Calcium Handling Mechanisms in Reperfusion Injury. Curr Pharm Des [Internet]. 2018 [cited 2021 Apr 12];24(34):4077–89. Available from: https://pubmed.ncbi.nlm.nih.gov/30465493/

  51. Nagy Z, Nardai S. Cerebral ischemia/repefusion injury: From bench space to bedside. Vol. 134, Brain Research Bulletin. Elsevier Inc.; 2017. p. 30–7.

  52. Kobayashi T, Kuroda S, Tada M, Houkin K, Yoshinobu Iwasaki HA. Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res. 2003;960(1–2):62–70.

    Article  CAS  Google Scholar 

  53. Nagy Z, Goehlert UG, Wolfe LS, Hüttner I. Ca2+ depletion-induced disconnection of tight junctions in isolated rat brain microvessels. Acta Neuropathol [Internet]. 1985 Mar [cited 2020 Oct 1];68(1):48–52. Available from: https://pubmed-ncbi-nlm-nih-gov.www.libproxy.wvu.edu/4050353/

  54. Singh SK, Mishra MK, Eltoum IEA, Bae S, Lillard JW, Singh R. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep [Internet]. 2018 1 [cited 2020 Oct 6];8(1):1–12. Available from: www.nature.com/scientificreports/

  55. Young LM, Geldenhuys WJ, Domingo OC, Malan SF, Van Der Schyf CJ. Synthesis and Biological Evaluation of Pentacycloundecylamines and Triquinylamines as Voltage-Gated Calcium Channel Blockers. Arch Pharm (Weinheim) [Internet]. 2016 1 [cited 2020 Oct 6];349(4):252–67. Available from: https://pubmed.ncbi.nlm.nih.gov/26892182/

  56. Geldenhuys WJ, Bezuidenhout LM, Dluzen DE. Effects of a novel dopamine uptake inhibitor upon extracellular dopamine from superfused murine striatal tissue. Eur J Pharmacol. 2009;619(1–3):38–43.

    Article  CAS  Google Scholar 

  57. Allen KL, Almeida A, Bates TE, Clark JB. Changes of Respiratory Chain Activity in Mitochondrial and Synaptosomal Fractions Isolated from the Gerbil Brain After Graded Ischaemia. J Neurochem [Internet]. 2002 Nov 23 [cited 2020 Oct 6];64(5):2222–9. Available from: https://doi.org/10.1046/j.1471-4159.1995.64052222.x

  58. Gaur V, Aggarwal A, Kumar A. Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol. 2009 Aug 15;616(1–3):147–54.

    Article  CAS  Google Scholar 

  59. Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, et al. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull. 2016 Mar 1;121:9–15.

    Article  CAS  Google Scholar 

  60. Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, et al. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res [Internet]. 2015 1 [cited 2020 Oct 6];58(1):61–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jpi.12193

  61. Wolff V, Schlagowski A-I, Rouyer O, Charles A-L, Singh F, Auger C, et al. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke. 2015; Available from: https://doi.org/10.1155/2015/323706,

  62. Almeida A, Allen KL, Bates TE, Clark JB. Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neurochem [Internet]. 1995 1 [cited 2020 Oct 6];65(4):1698–703. Available from: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1471-4159.1995.65041698.x

  63. Nour M, Scalzo F, Liebeskind DS. Ischemia-Reperfusion Injury in Stroke. Interv Neurol [Internet]. 2013 [cited 2021 Apr 12];1(3–4):185–99. Available from: https://pubmed.ncbi.nlm.nih.gov/25187778/

  64. Heiss WD, Thiel A, Grond M, Graf R. Which targets are relevant for therapy of acute ischemic stroke? Stroke [Internet]. 1999 [cited 2021 Apr 12];30(7):1486–9. Available from: https://pubmed.ncbi.nlm.nih.gov/10390327/

  65. Arnett D, Quillin A, Geldenhuys WJ, Menze MA, Konkle M. 4-Hydroxynonenal and 4-Oxononenal Differentially Bind to the Redox Sensor MitoNEET. Chem Res Toxicol [Internet]. 2019 [cited 2020 Oct 6];32(6):977–81. Available from: https://pubmed.ncbi.nlm.nih.gov/31117349/

  66. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol [Internet]. 2011 [cited 2020 Oct 5];29(11):1039–45. Available from: http://kir.fccc.edu/

  67. Elkamhawy A, Park JE, Cho NC, Sim T, Pae AN, Roh EJ. Discovery of a broad spectrum antiproliferative agent with selectivity for DDR1 kinase: Cell line-based assay, kinase panel, molecular docking, and toxicity studies. J Enzyme Inhib Med Chem [Internet]. 2016 2 [cited 2020 Oct 5];31(1):158–66. Available from: http://www.tandfonline.com/doi/full/10.3109/14756366.2015.1004057

  68. El-Deeb IM, Park BS, Jung SJ, Yoo KH, Oh CH, Cho SJ, et al. Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorganic Med Chem Lett. 2009;19(19):5622–6.

    Article  CAS  Google Scholar 

  69. Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK Kinase Signaling in Ion Homeostasis and Human Disease. Vol. 25, Cell Metabolism. Cell Press; 2017. p. 285–299.

  70. Veríssimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene [Internet]. 2001 6 [cited 2020 Oct 5];20(39):5562–9. Available from: www.hgsc.bcm.tmc.edu/seq_data/

  71. Yamada K, Park HM, Rigel DF, DiPetrillo K, Whalen EJ, Anisowicz A, et al. Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat Chem Biol. 2016;12(11):896–8. https://doi.org/10.1038/nchembio.2168.

  72. Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, et al. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol. 2020;332:113386.

    Article  CAS  Google Scholar 

  73. Begum G, Yuan H, Kahle KT, Li L, Wang S, Shi Y, et al. Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery after Stroke. Stroke [Internet]. 2015 [cited 2020 Oct 5];46(7):1956–65. Available from: http://stroke.ahajournals.org/lookup/doi/10.1161/STROKEAHA.115.008939

  74. Zhao H, Nepomuceno R, Gao X, Foley LM, Wang S, Begum G, et al. Deletion of the WNK3-SPAK kinase complex in mice improves radiographic and clinical outcomes in malignant cerebral edema after ischemic stroke. J Cereb Blood Flow Metab [Internet]. 2017 [cited 2020 Oct 5];37(2):550–63. Available from: http://journals.sagepub.com/doi/10.1177/0271678X16631561

Download references

Acknowledgements

We are grateful for the technical support from Deborah Corbin in the tissue processing. The project described was supported by the National Institute Of General Medical Sciences, U54GM104942, 1R41NS110070-01 and the WVU Stroke CoBRE Grant 2P20GM109098. The project described was supported by the National Heart, Lung and Blood Institute Grant HL-128485. The project described was supported by the Community Foundation for the Ohio Valley Whipkey Trust. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR001998. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner J. Geldenhuys.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saralkar, P., Mdzinarishvili, A., Arsiwala, T.A. et al. The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke. Pharm Res 38, 803–817 (2021). https://doi.org/10.1007/s11095-021-03046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03046-4

Keywords

Navigation