Skip to main content

Advertisement

Log in

Increasing Intracellular Levels of Iron with Ferric Ammonium Citrate Leads to Reduced P-glycoprotein Expression in Human Immortalised Brain Microvascular Endothelial Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

P-glycoprotein (P-gp) at the blood-brain barrier (BBB) precludes the brain penetration of many xenobiotics and mediates brain-to-blood clearance of β-amyloid, which accumulates in the Alzheimer’s disease (AD) brain. Zinc and copper are reported to modulate BBB expression and function of P-gp; however, the impact of exogenous iron, which accumulates in AD, on P-gp dynamics remains unknown.

Methods

P-gp protein and MDR1 transcript levels were assessed in immortalised human cerebral microvascular endothelial (hCMEC/D3) cells treated with ferric ammonium citrate (FAC; 250 μM, 72 h), by Western blotting and RT-qPCR, respectively. P-gp function was assessed using rhodamine-123 and [3H]-digoxin accumulation. Intracellular reactive oxygen species (ROS) levels were determined using 2′,7′-dichlorofluorescin diacetate and intracellular iron levels quantified using a ferrozine assay.

Results

FAC treatment significantly reduced P-gp protein (36%) and MDR1 mRNA (16%) levels, with no significant change in rhodamine-123 or [3H]-digoxin accumulation. While P-gp/MDR1 downregulation was associated with elevated ROS and intracellular iron, MDR1 downregulation was not attenuated with the antioxidant N-acetylcysteine nor the iron chelators desferrioxamine and deferiprone, suggesting the involvement of a ROS-independent mechanism or incomplete iron chelation.

Conclusions

These studies demonstrate that iron negatively regulates P-gp expression at the BBB, potentially impacting CNS drug delivery and brain β-amyloid clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid

AD:

Alzheimer’s disease

BBB:

Blood-brain barrier

BCRP/ABCG2:

Breast cancer resistance protein

DCFH-DA:

2′,7′-dichlorofluorescin diacetate

DFP:

Deferiprone

DFO:

Desferrioxamine

FAC:

Ferric ammonium citrate

hCMEC/D3:

Immortalised human cerebral microvascular endothelial cell line

NAC:

N-acetylcysteine

P-gp:

P-glycoprotein

ROS:

Reactive oxygen species

R123:

Rhodamine-123

References

  1. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  3. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci. 1989;86:695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schinkel AH. P-glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:179–94.

    Article  CAS  PubMed  Google Scholar 

  5. Davis TP, Sanchez-Covarubias L, Tome ME. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. Adv Pharmacol. 2014;71:25–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicolazzo JA, Banks WA. Decreased blood–brain barrier expression of P-glycoprotein in Alzheimer’s disease: impact on pathogenesis and brain access of therapeutic agents. Ther Deliv. 2011;2(7):841–4.

    Article  CAS  PubMed  Google Scholar 

  7. Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 1628;2015:298–316.

    Google Scholar 

  8. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  PubMed  Google Scholar 

  9. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, et al. MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-β peptides–implications for the mechanisms of Aβ clearance at the blood-brain barrier. Brain Pathol. 2007;17(4):347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mehta DC, Short JL, Nicolazzo JA. Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheimer’s disease. Pharm Res. 2013;30(11):2868–79.

    Article  CAS  PubMed  Google Scholar 

  12. Park R, Kook S-Y, Park J-C, Mook-Jung I. Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-κB signaling. Cell Death Dis. 2014;5:e1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hartz AMS, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol Pharmacol. 2010;77(5):715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wijesuriya HC, Bullock JY, Faull RLM, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 2010;1358:228–38.

    Article  CAS  PubMed  Google Scholar 

  15. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of P-glycoprotein at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55(7):1106–12.

    Article  CAS  PubMed  Google Scholar 

  16. Durk MR, Han K, Chow ECY, Ahrens R, Henderson JT, Fraser PE, et al. 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci. 2014;34(21):7091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McInerney MP, Volitakis I, Bush AI, Banks WA, Short JL, Nicolazzo JA. Ionophore and biometal modulation of P-glycoprotein expression and function in human brain microvascular endothelial cells. Pharm Res. 2018;35(4):83.

    Article  PubMed  Google Scholar 

  18. Zaremba A, Helm F, Fricker G. Impact of Zn2+ on ABC transporter function in intact isolated rat brain microvessels, human brain capillary endothelial cells, and in rat in vivo. Mol Pharm. 2019;16(1):305–17.

    Article  CAS  PubMed  Google Scholar 

  19. Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, et al. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal. 2014;20(8):1324–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2):568S–79S.

    Article  CAS  PubMed  Google Scholar 

  21. Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S, et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci. 2015;16:193–217.

    Article  Google Scholar 

  22. Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY. Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(2):562–75.

    Article  CAS  PubMed  Google Scholar 

  23. Ayton S, Diouf I, Bush AI. Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry. 2018;89:456–60.

    Article  PubMed  Google Scholar 

  24. McCarthy RC, Kosman DJ. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci. 2015;72(4):709–27.

    Article  CAS  PubMed  Google Scholar 

  25. Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience. 2016;332:191–202.

    Article  CAS  PubMed  Google Scholar 

  26. Gnana-Prakasam JP, Reddy SK, Veeranan-Karmegam R, Smith SB, Martin PM, Ganapathy V. Polarized distribution of heme transporters in retinal pigment epithelium and their regulation in the iron-overload disease hemochromatosis. Investig Ophthalmol Vis Sci. 2011;52(12):9279–86.

    Article  Google Scholar 

  27. Weksler B, Subileau E, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Fed Am Soc Exp Biol. 2005;19(13):1872–4.

    CAS  PubMed  Google Scholar 

  28. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem. 2004;331(2):370–5.

    Article  CAS  PubMed  Google Scholar 

  29. Hoepken HH, Korten T, Robinson SR, Dringen R. Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem. 2004;88(5):1194–202.

    Article  CAS  PubMed  Google Scholar 

  30. Voloboueva LA, Killilea DW, Atamna H, Ames BN. N-tert-butyl hydroxylamine, a mitochondrial antioxidant, protects human retinal pigment epithelial cells from iron overload: relevance to macular degeneration. FASEB J. 2007;21(14):4077–86.

    Article  CAS  PubMed  Google Scholar 

  31. Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One. 2014;9(1):e85115.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Newman SA, Pan Y, Short JL, Nicolazzo JA. Assessing the impact of lithium chloride on the expression of P-glycoprotein at the blood-brain barrier. J Pharm Sci. 2017;106:2625–31.

    Article  CAS  PubMed  Google Scholar 

  33. Salvador GA, Oteiza PI. Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology. 2011;32(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  34. Cai Y, Lu J, Miao Z, Lin L, Ding J. Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol Ther. 2007;6(11):1794–9.

    Article  CAS  PubMed  Google Scholar 

  35. Thévenod F, Friedmann JM, Katsen AD, Hauser IA. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-κB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem. 2000;275(3):1887–96.

    Article  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJH, Nicolazzo JA. Fatty acid-binding protein 5 facilitates the blood-brain barrier transport of docosahexaenoic acid. Mol Pharm. 2015;12:4375–85.

    Article  CAS  PubMed  Google Scholar 

  38. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31.

    Article  CAS  PubMed  Google Scholar 

  39. Stookey LL. Ferrozine–a new spectrophotometric reagent for iron. Anal Chem. 1970;42(7):779–81.

    Article  CAS  Google Scholar 

  40. Tanner M, Galanello R, Dessi C, Smith G, Westwood M, Agus A, et al. A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation. 2007;115(14):1876–84.

    Article  CAS  PubMed  Google Scholar 

  41. Porter JB, Wood J, Olivieri N, Vichinsky EP, Taher A, Neufeld E, et al. Treatment of heart failure in adults with thalassemia major: response in patients randomised to deferoxamine with or without deferiprone. J Cardiovasc Magn Reson. 2013;15(38):1–10.

    Google Scholar 

  42. Durk MR, Chan GNY, Campos CR, Peart JC, Chow ECY, Lee E, et al. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J Neurochem. 2012;123(6):944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Wu J-Y, Hait WN, Yang J-M. Regulation of the stability of P-glycoprotein by ubiquitination. Mol Pharmacol. 2004;66(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  44. Kania KD, Wijesuriya HC, Hladky SB, Barrand MA. Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Res. 2011;1418:1–11.

    Article  CAS  PubMed  Google Scholar 

  45. Noack A, Noack S, Hoffmann A, Maalouf K, Buettner M, Couraud P-O, et al. Drug-induced trafficking of P-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C. PLoS One. 2014;9(2):e88154.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech. 2002;57:365–80.

    Article  CAS  PubMed  Google Scholar 

  47. Fu D, Arias IM. Intracellular trafficking of P-glycoprotein. Int J Biochem Cell Biol. 2012;44(3):461–4.

    Article  CAS  PubMed  Google Scholar 

  48. Deng L, Lin-Lee Y-C, Claret F-X, Kuo MT. 2-Acetylaminofluorene up-regulates rat mdr1b expression through generating reactive oxygen species that activate NF-κB pathway. J Biol Chem. 2001;276:413–20.

    Article  CAS  PubMed  Google Scholar 

  49. Hong H, Lu Y, Ji ZN, Liu GQ. Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. J Neurochem. 2006;98(5):1465–73.

    Article  CAS  PubMed  Google Scholar 

  50. Hartz AMS, Bauer B, Block ML, Hong JS, Miller DS. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J. 2008;22(8):2723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wartenberg M, Ling FC, Klein F, Acker H, Petrat K, Sauer H. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor-1 and reactive oxygen species. FASEB J. 2003;17:503–5.

    Article  CAS  PubMed  Google Scholar 

  52. Garrick MD, Singleton ST, Vargas F, Kuo H-C, Zhao L, Knöpfel M, et al. DMT1: which metals does it transport? Biol Res. 2006;39:79–85.

    Article  CAS  PubMed  Google Scholar 

  53. Wang C-Y, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem. 2012;287(41):34032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vlachodimitropoulou Koumoutsea E, Garbowski M, Porter J. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization. Br J Haematol. 2015;170(6):874–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The work presented in this manuscript was funded by the Mason Foundation National Medical Program (MAS2017F035). Stephanie Newman was supported by a ‘Research Training Program’ stipend, provided by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A Nicolazzo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, S.A., Pan, Y., Short, J.L. et al. Increasing Intracellular Levels of Iron with Ferric Ammonium Citrate Leads to Reduced P-glycoprotein Expression in Human Immortalised Brain Microvascular Endothelial Cells. Pharm Res 38, 97–111 (2021). https://doi.org/10.1007/s11095-021-03006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03006-y

Key words

Navigation