Skip to main content

Advertisement

Log in

Anti-Melanoma Activity of Indomethacin Incorporated into Mesoporous Silica Nanoparticles

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Melanoma is the deadliest type of skin cancer. Treatments that directly address tumor survival are required. Indomethacin (IND) is a well-known drug used worldwide. Although widely used as a therapeutic agent, IND has undesirable gastrointestinal effects.

Purpose

To investigate the antitumor efficacy of IND incorporated into mesoporous silica nanoparticles (MSNPs+IND), as well as its toxic potential in a syngeneic murine B16 melanoma model.

Methods

Antitumor activity was evaluated by measuring tumor size and weight and by histopathological analysis. Possible molecular signaling pathways involved in the antitumor activity were analyzed by Western blot in liver tissue and by immunohistochemistry in tumor tissue. The potential toxicity was evaluated by determining body and organ weights and by biochemical and genotoxic analysis.

Results

MSNPs+IND treatments inhibited tumor growth by up to 70.09% and decreased the frequency of mitosis in tumor tissues, which was up to 37.95% lower compared to the IND groups. In hepatic tissue, COX-2 levels decreased significantly after treatment with MSNPs+IND and IND. Additionally, MSNPs+IND and IND increased the levels of cleaved caspase-3 (156.25% and 137.50%, respectively), inducing tumor cell apoptosis. Genotoxicity was limited to the group treated with the higher concentration of IND, while MSNPs prevented IND-induced genotoxicity.

Conclusions

MSNPs may be promising for future applications in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APTES:

3-Aminopropyltriethoxysilane alkoxide

B16F10:

Murine melanoma cells

BRAF :

Human oncogene

b.w.:

Body weight

Ca2+ :

Calcium

COX:

Cyclooxygenase

COX-1:

Cyclooxygenase, isoform 1

COX-2:

Cyclooxygenase, isoform 2

DAMPs:

Damage-associated molecular patterns

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethylsulfoxide

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediamine tetraacetic acid

FDA:

Food and Drug Administration

HAM F10:

Nutrient Mixture F-10 Ham

HIF-1:

Hypoxia-inducible fator-1

IAP:

Inhibitors of apoptosis proteins

INCA:

Brazilian National Cancer Institute (Instituto Nacional do Câncer)

IND:

Indomethacin

MEK :

Human oncogene

MN:

Micronucleus

MNPCE:

Micronucleated polychromatic erythrocytes

MSNP:

Mesoporous silica nanoparticles

MSNP+IND:

Indomethacin incorporated into mesoporous silica nanoparticles

NCE:

Normochromatic erythrocytes

NDI:

Nuclear division index

NF-κB:

Nuclear factor kappa B

NK:

Natural killers cells

NM:

Nanomaterial

NO:

Nitric oxide

NP:

Nanoparticle

NSAIDs:

Non-steroidal anti-inflammatory drugs

O2 :

Oxygen

OECD:

Organization for Economic Co-operation and Development

PBS:

Phosphate-buffered saline

PGE2:

E2 prostaglandin

pH:

Hydrogenionic potential

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RPMI:

Roswell Park Memorial Institute culture medium

SCGE:

Single cell gel electrophoresis

SD:

Standard deviation

Sol-gel:

Solution-Gel

STAT3:

Signal transducers and activators of transcription

TGA:

Thermogravimetric analysis

TGIR:

Tumor growth inhibition rate

TNF:

Tumor necrosis factor

USP:

São Paulo University (Universidade de São Paulo)

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Hao J, Xu H, Luo M, Yu W, Chen M, Liao Y, et al. The tumor-promoting role of TRIP4 in melanoma progression and its involvement in response to BRAF-targeted therapy. J Investig Dermatol. 2018;138:159–70.

    CAS  PubMed  Google Scholar 

  2. Rozeman EA, Dekker TJA, Haanen JBAG, Blank CU. Advanced melanoma: current treatment options, biomarkers, and future perspectives. Am J Clin Dermatol. 2018;19:303–17.

    PubMed  Google Scholar 

  3. Mishra H, Mishra PK, Ekielski A, Jaggi M, Igbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol. 2018;144:2283–302.

    CAS  PubMed  Google Scholar 

  4. Somasundaram R, Herlyn M. Indomethacin to the rescue of TRAIL-resistant melanomas. J Invest Dermatol. 2014;134:1198–9.

    CAS  PubMed  Google Scholar 

  5. Tse AK, Cao HH, Cheng CY, Kwan HY, Yu H, Fong WF, et al. Indomethacin sensitizes TRAIL-resistant melanoma cells to TRAIL-induced apoptosis through ROS-mediated upregulation of death receptor 5 and downregulation of survivin. J Invest Dermatol 2014. 134:1397–407.

  6. Maity P, Bindu S, Dey S, Goyal M, Alam A, Pal C, et al. Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J Pineal Res. 2009;46:314–23.

    CAS  PubMed  Google Scholar 

  7. Lucas S. The Pharmacology of Indomethacin. Headache Curr. 2016;56:436–46.

    Google Scholar 

  8. Ferreira NH, Furtado RA, Ribeiro AB, de Oliveira PF, Ozelin SD, de Souza LDR, et al. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J Inorg Biochem. 2018;182:9–17.

    CAS  PubMed  Google Scholar 

  9. Badri W, Miladi K, Robin S, Viennet C, Nazari QA, Agusti G, et al. Polycaprolactone based nanoparticles loaded with indomethacin for anti-inflammatory therapy: from preparation to ex vivo study. Pharm Res. 2017;34:1773–83.

    CAS  PubMed  Google Scholar 

  10. Wersig T, Krombholz R, Janich C, Meister A, Kressler J, Mäder K. Indomethacin functionalized poly(glycerol adipate) nanospheres as promising candidates for modified drug release. Eur J Pharm Sci. 2018;123:350–61.

    CAS  PubMed  Google Scholar 

  11. Salem NA, Wahba MA, Eisa WH, El-Shamarka M, Khalil W. Silver oxide nanoparticles alleviate indomethacin-induced gastric injury: a novel antiulcer agent. Inflammopharmacology. 2018;26:1025–35.

    CAS  PubMed  Google Scholar 

  12. Li J, Guo Y, Li H, Shang L, Li S. Superiority of amino-modified chiral mesoporous silica nanoparticles in delivering indomethacin. Artif Cells Nanomed Biotechnol. 2018;46:1085–94.

    CAS  PubMed  Google Scholar 

  13. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:E118.

    PubMed  Google Scholar 

  14. Deodhar GV, Adams ML, Trewyn BG. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol J. 2017;12:1600408.

    Google Scholar 

  15. Cha W, Fan R, Miao Y, Zhou Y, Qin C, Shan X, et al. Mesoporous silica nanoparticles as carriers for intracellular delivery of nucleic acids and subsequent therapeutic applications. Molecules. 2017;22:782.

    PubMed Central  Google Scholar 

  16. Hanafi-Bojd MY, Ansari L, Malaekeh-Nikouei B. Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles. Ther Deliv. 2016;7:649–55.

    CAS  PubMed  Google Scholar 

  17. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2018;23:47.

    Google Scholar 

  18. Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein protection and delivery. Front Chem. 2019;7:290.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Braz WR, Rocha NL, de Faria EH, Silva MLA, Ciuffi KJ, Tavares DC, et al. Incorporation of anti-inflammatory agent into mesoporous silica. Nanotechnology. 2016;27:385103.

    PubMed  Google Scholar 

  20. Qin J, Yuan J, Li L, Liu H, Qin R, Qin W, et al. In vitro and in vivo inhibitory effect evaluation of cyclooxygenase-2 inhibitors, antisense cyclooxygenase-2 cDNA, and their combination on the growth of human bladder cancer cells. Biomed Pharmacother. 2009;63:241–8.

    CAS  PubMed  Google Scholar 

  21. Sun W, Chen G. Impact and mechanism of non-steroidal anti-inflammatory drugs combined with chemotherapeutic drugs on human lung cancer-nude mouse transplanted tumors. Oncol Lett. 2016;11:4193–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morinaga Y, Suga Y, Ehara S, Harada K, Nihei Y, Suzuki M. Combination effect of AC-7700, a novel combretastatin A-4 derivative, and cisplatin against murine and human tumors in vivo. Cancer Sci. 2003;94:200–4.

    CAS  PubMed  Google Scholar 

  23. Eslami A, Lujan J. Western blotting: sample preparation to detection. J Vis Exp. 2010;14:2359.

    Google Scholar 

  24. Shu J, Dolman GE, Duan J, Qiu G, Ilyas M. Statistical colour models: an automated digital image analysis method for quantification of histological biomarkers. Biomed Eng Online. 2016;27:46.

    Google Scholar 

  25. Mustafa HN, El Awdan SA, Hegazy GA, Abdel Jaleel GA. Prophylactic role of coenzyme Q10 and Cynara scolymus L on doxorubicin-induced toxicity in rats: Biochemical and immunohistochemical study. Indian J Pharm. 2015;47:649–56.

    CAS  Google Scholar 

  26. MacGregor JT, Heddle JA, Hite M, Margolin BH, Ramel C, Salamone MF, et al. Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res. 1987;189:103–12.

    CAS  PubMed  Google Scholar 

  27. OECD. Test No. 474: Mammalian Erythrocyte Micronucleus Test. Paris: OECD Publishing; 2016.

    Google Scholar 

  28. Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 2014;20:1104–13.

    CAS  PubMed  Google Scholar 

  29. Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol. 2015;35:S151–84.

    PubMed  Google Scholar 

  30. Deinlein T, Arzberger E, Zalaudek I, Massone C, Garcias-Ladaria J, Oliveira A, et al. Dermoscopic characteristics of melanoma according to the criteria “ulceration” and “mitotic rate” of the AJCC 2009 staging system for melanoma. PLoS One. 2017;12:e0174871.

    PubMed  PubMed Central  Google Scholar 

  31. Eli Y, Przedecki F, Levin G, Kariv N, Raz A. Comparative effects of indomethacin on cell proliferation and cell cycle progression in tumor cells grown in vitro and in vivo. Biochem Pharmacol. 2001;61:565–71.

    CAS  PubMed  Google Scholar 

  32. Brooks G, Yu XM, Wang YQ, Crabbe MJC, Shattock MJ, Harpe JV. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit vascular smooth muscle cell proliferation via differential effects on the cell cycle. J Pharm Pharmacol. 2003;55:519–26.

    CAS  PubMed  Google Scholar 

  33. Zhang Y, Jiao XY. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23:1586–1590.

  34. Maru GB, Gandhi K, Ramchandani A, Kumar G. The Role of Inflammation in Skin Cancer: In: Aggarwal BB, Sung B, Gupta SC, Eds. Inflammation and Cancer, Advances in Experimental Medicine and Biology. Volume 816. Springer Basel. 2014:437–69.

  35. Cahlin C, Gelin J, Delbro D, Lönnroth C, Doi C, Lundholm K. Effect of cyclooxygenase and nitric oxide synthase inhibitors on tumor growth in mouse tumor models with and without cancer cachexia related to prostanoids. Cancer Res. 2000;60:1742–9.

    CAS  PubMed  Google Scholar 

  36. Tober KL, Thomas-Ahner JM, Maruyama T, Oberyszyn TM. Possible cross-regulation of the E prostanoid receptors. J Invest Dermatol. 2006;126:205–11.

    CAS  PubMed  Google Scholar 

  37. Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol. 2005;26:1393–9.

    CAS  PubMed  Google Scholar 

  38. Tamargo J, Le Heuzey JY, Mabo P. Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol. 2015;71:549–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Richardson CM, Sharma RA, Cox G, O'Byrne KJ. Epidermal growth factor receptors and cyclooxygenase-2 in the pathogenesis of non-small cell lung cancer: potential targets for chemoprevention and systemic therapy. Lung Cancer. 2003;39:1–13.

    CAS  PubMed  Google Scholar 

  40. Wong RSY. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv Pharmacol Sci. 2019;2019:10.

    Google Scholar 

  41. National Center for Biotechnology Information. PubChem Database. Indomethacin, CID = 3715. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Indomethacin. Accessed on 28 Aug. 2019.

  42. Rama ACR, Veiga F, Figueiredo IV, Sousa A, Caramona M. Aspectos biofarmacêuticos da formulação de medicamentos para neonatos: fundamentos da complexação de indometacina com hidroxipropil-beta-ciclodextrina para tratamento oral do fechamento do canal arterial. Rev Bras Cienc Farm. 2005;41:281–99.

    CAS  Google Scholar 

  43. Hu J, Sheng Y, Shi J, Yu B, Yu Z, Liao G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr Drug Metab. 2018;19:723–38.

    CAS  PubMed  Google Scholar 

  44. Aggarwal S, Taneja N, Lin L, Orringer MB, Rehemtulla A, Beer DG. Indomethacin-induced apoptosis in esophageal adenocarcinoma cells involves upregulation of Bax and translocation of mitochondrial cytochrome C independent of COX-2 expression. Neoplasia. 2000;2:346–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Basivireddy J, Vasudevan A, Jacob M, Balasubramanian KA. Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochem Pharmacol. 2002;64:339–49.

    CAS  PubMed  Google Scholar 

  46. Sivalingam N, Basivireddy J, Balasubramanian KA, Jacob M. Curcumin attenuates indomethacin-induced oxidative stress and mitochondrial dysfunction. Arch Toxicol. 2008;82:471–81.

    CAS  PubMed  Google Scholar 

  47. Nagappan AS, Varghese J, James JV, Jacob M. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney. Eur J Pharmacol. 2015;761:199–205.

    CAS  PubMed  Google Scholar 

  48. Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, et al. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J Gastroenterol. 2015;50:541–54.

    CAS  PubMed  Google Scholar 

  49. Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, et al. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell. 2010;17:560–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Michael B, Yano B, Sellers RS, Perry R, Morton D, Roome N, et al. Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol. 2007;35:742–50.

    PubMed  Google Scholar 

  51. Gounden V, Jialal I. Renal Function Tests: In: Stat Pearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507821/.

  52. Hilal Ahmad M, Fatima M, Hossain MM, Mondal AC. Determination of potential oxidative damage, hepatotoxicity, and cytogenotoxicity in male Wistar rats: Role of indomethacin. J Biochem Mol Toxicol. 2018;32:22226.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the São Paulo Research Foundation (FAPESP, Brazil; grant # 2016/24269-7). Partial support was provided by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil; Finance Code 001). The authors are grateful to the National Council for Scientific and Technological (CNPq, Brazil) for the fellowships granted. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Helen Ferreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N.H., Ribeiro, A.B., Rinaldi-Neto, F. et al. Anti-Melanoma Activity of Indomethacin Incorporated into Mesoporous Silica Nanoparticles. Pharm Res 37, 172 (2020). https://doi.org/10.1007/s11095-020-02903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02903-y

KEY WORDS

Navigation