Skip to main content

Advertisement

Log in

Drug Delivery Nanoparticles with Locally Tunable Toxicity Made Entirely from a Light-Activatable Prodrug of Doxorubicin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A major challenge facing nanoparticle-based delivery of chemotherapy agents is the natural and unavoidable accumulation of these particles in healthy tissue resulting in local toxicity and dose-limiting side effects. To address this issue, we have designed and characterized a new prodrug nanoparticle with controllable toxicity allowing a locally-delivered light trigger to convert the payload of the particle from a low to a high toxicity state.

Methods

The nanoparticles are created entirely from light-activatable prodrug molecules using a nanoprecipitation process. The prodrug is a conjugate of doxorubicin and photocleavable biotin (DOX-PCB).

Results

These DOX-PCB nanoparticles are 30 times less toxic to cells than doxorubicin, but can be activated to release pure therapeutic doxorubicin when exposed to 365 nm light. These nanoparticles have an average diameter of around 100 nm and achieve the maximum possible prodrug loading capacity since no support structure or coating is required to prevent loss of prodrug from the nanoparticle.

Conclusions

These light activatable nanoparticles demonstrate tunable toxicity and can be used to facilitate future therapy development whereby light delivered specifically to the tumor tissue would locally convert the nanoparticles to doxorubicin while leaving nanoparticles accumulated in healthy tissue in the less toxic prodrug form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

DMEM:

Dulbecco's Modified Eagle Medium

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

DOX-PCB:

Doxorubicin-Photocleavable Biotin

DPBS:

Dulbecco’s phosphate buffered saline

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

FBS:

Fetal bovine serum

HPLC:

High pressure liquid chromatography

LC:

Liquid chromatography

LED:

Light emitting diode

MS:

Mass spectrometry

NP:

Nanoparticles

NTA:

Nanoparticle tracking analysis

PCB:

Photocleavable biotin

PEG:

Polyethylene glycol

RES:

Reticulo-endothelial system

SEM:

Scanning electron microscopy

SRM:

Selected reaction monitoring

References

  1. Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig. 2001;19(4):424–36.

    Article  CAS  Google Scholar 

  2. Pawan K, Singal NI. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.

    Article  Google Scholar 

  3. Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. 1990;4(13):3076–86.

  4. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and Cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    Article  CAS  PubMed  Google Scholar 

  5. Charrois G, Allen T. Multiple injections of Pegylated liposomal doxorubicin: pharmacokinetics and therapeutic activity. J Pharmacol Exp Ther. 2003;306(3):1058–67.

    Article  CAS  PubMed  Google Scholar 

  6. Judson I, Radford JA, Harris M, Blay JY, Van Hoesel Q, Le Cesne A, et al. Randomised phase II trial of pegylated liposomal doxorubicin (DOXIL®/CAELYX®) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC soft tissue and bone sarcoma group. Eur J Cancer. 2001;37(7):870–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  CAS  PubMed  Google Scholar 

  8. Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  9. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;154:987–92.

    Google Scholar 

  11. Amit B, Zehavi U, Patchornik A. Photosensitive protecting groups of amino sugars and their use in glycoside synthesis. 2-Nitrobenzyloxycarbonylamino and 6-Nitroveratryloxycarbonylamino derivatives. J Org Chem. 1974;39:192–6.

    Article  Google Scholar 

  12. Ibsen S, Zahavy E, Wrasidlo W, Berns M, Chan M, Esener S. A novel doxorubicin Prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res. 2010;27(9):1848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibsen S, Zahavy E, Wrasidlo W, Hayashi T, Norton J, Su Y, et al. Localized in-vivo activation of a Photoactivatable doxorubicin Prodrug in deep tumor tissue. Photochem Photobiol. 2013;89:698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tietze LF, Neumann M, Mollers T, Fischer R, Glusenkamp KH, Rajewsky MF, et al. Proton-mediated liberation of Aldophosphamide from a nontoxic Prodrug: a strategy for tumor-selective activation of Cytocidal drugs. Cancer Res. 1989;49:4179–84.

    CAS  PubMed  Google Scholar 

  15. Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.

    Article  CAS  PubMed  Google Scholar 

  16. Breistol K, Hendriks HR, Berger DP, Langdon SP, Fiebig HH, Fodstad O. The antitumour activity of the Prodrug N-l-leucyl-doxorubicin and its parent compound doxorubicin in human tumour Xenografts. Eur J Cancer. 1998;34(10):1602–6.

    Article  CAS  PubMed  Google Scholar 

  17. Gopin A, Ebner S, Attali B, Shabat D. Enzymatic activation of second-generation dendritic prodrugs: conjugation of self-immolative dendrimers with PEG via click chemistry. Bioconjug Chem. 2006;17:1432–40.

    Article  CAS  PubMed  Google Scholar 

  18. Shamis M, Lode HN, Shabat D. Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2. JACS. 2004;126:1726–31.

    Article  CAS  Google Scholar 

  19. Park J, Hong K, Kirpotin D, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 Immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8:1172–81.

    CAS  PubMed  Google Scholar 

  20. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49:6449–65.

    CAS  PubMed  Google Scholar 

  21. Ni T, Baudisch P. Disappearing mobile devices. In: Proceedings of the 22nd annual ACM symposium on user interface software and technology Victoria. British Columbia, Canada: Association for Computing Machinery; 2009. p. 101–10.

    Chapter  Google Scholar 

  22. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34(8):1274–81.

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Celmer EJ, Koutcher JA, Alfano RR. UV reflectance spectroscopy probes DNA and protein changes in human breast tissues. J Clin Laser Med Surg. 2001;19(1):35–9.

    Article  PubMed  Google Scholar 

  24. Sutherland J, Griffin K. Absorption Spectrum of DNA for wavelengths greater than 300 nm. Radiat Res. 1981;86(3):399–410.

    Article  CAS  PubMed  Google Scholar 

  25. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci. 1999;96:3104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gabizon A, Tzemach D, Mak L, Bronstein M, Horowitz AT. Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Target. 2002;10(7):539–48.

    Article  CAS  PubMed  Google Scholar 

  28. Bao A, Goins B, Klipper R, Negrete G, Phillips WT. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther. 2004;308(2):419–25.

    Article  CAS  PubMed  Google Scholar 

  29. Pasqualini R, Arap W, McDonald DM. Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med. 2002;8(12):563–71.

    Article  CAS  PubMed  Google Scholar 

  30. Quigley GJ, Wang AH, Ughetto G, van der Marel G, van Boom JH, Rich A. Molecular structure of an anticancer drug-DNA complex: Daunomycin plus d(CpGpTpApCpG). Proc Nati Acad Sc USA. 1980;77(12):7204–8.

  31. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the Anthracycline antibiotics Adriamycin and Daunorubicin. Biochem Pharmacol. 1999;57:727–41.

    Article  CAS  PubMed  Google Scholar 

  32. Botvinick EL, Berns MW. Internet based robotic laser scissors and tweezers microscopy. Microsc Res Tech. 2005;68(2):65–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Support was provided by Grant Numbers T32 CA121938, R25 CA153915, and 5 U54 CA119335 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The authors also wish to thank Dr. Yongxuan Su and the Molecular Mass Spectrometry Facility at the University of California San Diego Department of Chemistry and Biochemistry for their work with the mass spectrometry analysis. The authors also wish to thank Linda Shi and Michelle Duquette-Huber for their assistance with the PTK2 cell data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Schutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schutt, C., Ibsen, S., Zahavy, E. et al. Drug Delivery Nanoparticles with Locally Tunable Toxicity Made Entirely from a Light-Activatable Prodrug of Doxorubicin. Pharm Res 34, 2025–2035 (2017). https://doi.org/10.1007/s11095-017-2205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2205-4

Key Words

Navigation