Skip to main content
Log in

CYP2D6 Genetic Variation and Beta-Blocker Maintenance Dose in Patients with Heart Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This study examined whether a CYP2D6 polymorphism (CYP2D6*4) was related to beta-blocker maintenance dose in patients with heart failure.

Methods

Logistic regression modeling was utilized in a retrospective chart-review analysis of heart-failure patients (60% Male, 90% of European descent) to assess whether CYP2D6*4 (non-functional CYP2D6 allele present in 1 of 5 individuals of European descent) is associated with maintenance dose of carvedilol (n = 65) or metoprolol (n = 33).

Results

CYP2D6*4 was associated with lower maintenance dose of metoprolol (OR 0.13 [95% CI 0.02–0.75] p = 0.023), and a trend was observed between CYP2D6*4 and higher maintenance dose of carvedilol (OR 2.94 [95% CI 0.84–10.30] p = 0.093). None of the patients that carried CYP2D6*4 achieved the recommended target dose of metoprolol (200 mg/day).

Conclusion

Consistent with the role of CYP2D6 in the metabolism of metoprolol, the tolerated maintenance dose of metoprolol was lower in CYP2D6*4 carriers compared to non-carriers. Consistent with the role of CYP2D6 in activation of carvedilol, tolerated maintenance dose of carvedilol was higher in CYP2D6*4 carriers compared to non-carriers. Further investigation is warranted to ascertain the potential of CYP2D6 as a potential predictive biomarker of beta-blocker maintenance dose in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CLIA:

Clinical laboratory improvement amendments

CPMC:

Coriell personalized medicine collaborative

CYP2D6:

Cytochrome P450 family 2 subfamily D member 6

CYP2D6 :

Gene for cytochrome P450 family 2 subfamily D member 6

DPWG:

Dutch Pharmacogenetics Working Group

EM:

Extensive metabolizer

EMR:

Electronic medical record

IM:

Intermediate metabolizer

OSU:

Ohio State University

PharmGKB®:

Pharmacogenomics knowledgebase

PM:

Poor metabolizer

UM:

Ultra-rapid metabolizer

References

  1. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–60.

    Google Scholar 

  2. U.S. Department of Health and Human Services Organ Procurement and Transplantation Network. National Data. 2016; Available at: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.

  3. WRITING COMMITTEE MEMBERS, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    Google Scholar 

  4. Porapakkham P, Porapakkham P, Krum H. Is target dose of beta-blocker more important than achieved heart rate or heart rate change in patients with systolic chronic heart failure? Cardiovasc Ther. 2010;28(2):93–100.

    Article  CAS  Google Scholar 

  5. Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther. 1995;57(5):518–24.

    Article  CAS  Google Scholar 

  6. Rau T, Wuttke H, Michels LM, Werner U, Bergmann K, Kreft M, et al. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther. 2009;85(3):269–72.

    Article  CAS  Google Scholar 

  7. Horikiri Y, Suzuki T, Mizobe M. Pharmacokinetics and metabolism of bisoprolol enantiomers in humans. J Pharm Sci. 1998;87(3):289–94.

    Article  CAS  Google Scholar 

  8. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics. 2007;17(2):93–101.

    CAS  PubMed  Google Scholar 

  9. Sharp CF, Gardiner SJ, Jensen BP, Roberts RL, Troughton RW, Lainchbury JG, et al. CYP2D6 genotype and its relationship with metoprolol dose, concentrations and effect in patients with systolic heart failure. Pharmacogenomics J. 2009;9(3):175–84.

    Article  CAS  Google Scholar 

  10. Lewis RV, Ramsay LE, Jackson PR, Yeo WW, Lennard MS, Tucker GT. Influence of debrisoquine oxidation phenotype on exercise tolerance and subjective fatigue after metoprolol and atenolol in healthy subjects. Br J Clin Pharmacol. 1991;31(4):391–8.

    Article  CAS  Google Scholar 

  11. Batty JA, Hall AS, White HL, Wikstrand J, de Boer RA, van Veldhuisen DJ, et al. An investigation of CYP2D6 genotype and response to metoprolol CR/XL during dose titration in patients with heart failure: a MERIT-HF substudy. Clin Pharmacol Ther. 2014;95(3):321–30.

    Article  CAS  Google Scholar 

  12. Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Skaar TC, et al. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96(2):175–81.

    Article  CAS  Google Scholar 

  13. Wu D, Li G, Deng M, Song W, Huang X, Guo X, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to beta-blocker therapy in hypertension. J Int Med Res. 2015;43(3):424–34.

    Article  CAS  Google Scholar 

  14. Blake CM, Kharasch ED, Schwab M, Nagele P. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94(3):394–9.

    Article  CAS  Google Scholar 

  15. Honda M, Nozawa T, Igarashi N, Inoue H, Arakawa R, Ogura Y, et al. Effect of CYP2D6*10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull. 2005;28(8):1476–9.

    Article  CAS  Google Scholar 

  16. Takekuma Y, Takenaka T, Kiyokawa M, Yamazaki K, Okamoto H, Kitabatake A, et al. Evaluation of effects of polymorphism for metabolic enzymes on pharmacokinetics of carvedilol by population pharmacokinetic analysis. Biol Pharm Bull. 2007;30(3):537–42.

    Article  CAS  Google Scholar 

  17. Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213–22.

    Article  CAS  Google Scholar 

  18. Lambert C, Halpert JR, Rouleau J, Jutras L, Leroyer V, du Souich P. Effect of congestive heart failure on the intrinsic metabolic capacity of the liver in the dog. Drug Metab Dispos. 1991;19(5):985–9.

    CAS  PubMed  Google Scholar 

  19. Ogawa R, Stachnik JM, Echizen H. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 2, drugs administered orally). Clin Pharmacokinet. 2014;53(12):1083–114.

    Article  CAS  Google Scholar 

  20. Sweet K, Gordon ES, Sturm AC, Schmidlen TJ, Manickam K, Toland AE, et al. Design and implementation of a randomized controlled trial of genomic counseling for patients with chronic disease. J Pers Med. 2014;4(1):1–19.

    Article  Google Scholar 

  21. Pasternak B, Svanstrom H, Melbye M, Hviid A. Association of treatment with carvedilol vs metoprolol succinate and mortality in patients with heart failure. JAMA Intern Med. 2014;174(10):1597–604.

    Article  Google Scholar 

  22. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.

    Article  CAS  Google Scholar 

  23. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662–73.

    Article  CAS  Google Scholar 

  24. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376–82.

    Article  CAS  Google Scholar 

  25. MERIT-HF Investigators. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.

    Article  Google Scholar 

  26. Peck RW. The right dose for every patient: a key step for precision medicine. Nat Rev Drug Discov. 2016;15(3):145–6.

    Article  CAS  Google Scholar 

  27. U.S. Food and Drug Administration. Metoprolol prescribing information. 2014; Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/019962s044lbl.pdf, 2016.

  28. U.S. Food and Drug Administration. Carvedilol prescribing information. 2015; Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020297s037lbl.pdf, 2016.

  29. Sehrt D, Meineke I, Tzvetkov M, Gultepe S, Brockmoller J. Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics 2011.

  30. Saito M, Kawana J, Ohno T, Hanada K, Kaneko M, Mihara K, et al. Population pharmacokinetics of R- and S-carvedilol in Japanese patients with chronic heart failure. Biol Pharm Bull. 2010;33(8):1378–84.

    Article  CAS  Google Scholar 

  31. Baudhuin LM, Miller WL, Train L, Bryant S, Hartman KA, Phelps M, et al. Relation of ADRB1, CYP2D6, and UGT1A1 polymorphisms with dose of, and response to, carvedilol or metoprolol therapy in patients with chronic heart failure. Am J Cardiol. 2010;106(3):402–8.

    Article  CAS  Google Scholar 

  32. Nozawa T, Taguchi M, Tahara K, Hashimoto Y, Igarashi N, Nonomura M, et al. Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol. J Cardiovasc Pharmacol. 2005;46(5):713–20.

    Article  CAS  Google Scholar 

  33. Wuttke H, Rau T, Heide R, Bergmann K, Bohm M, Weil J, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther. 2002;72(4):429–37.

    Article  CAS  Google Scholar 

  34. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF. Oxidation phenotype--a major determinant of metoprolol metabolism and response. N Engl J Med. 1982;307(25):1558–60.

    Article  CAS  Google Scholar 

  35. McGourty JC, Silas JH, Lennard MS, Tucker GT, Woods HF. Metoprolol metabolism and debrisoquine oxidation polymorphism--population and family studies. Br J Clin Pharmacol. 1985;20(6):555–66.

    Article  CAS  Google Scholar 

  36. Kirchheiner J, Heesch C, Bauer S, Meisel C, Seringer A, Goldammer M, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2004;76(4):302–12.

    Article  CAS  Google Scholar 

  37. Koytchev R, Alken RG, Vlahov V, Kirkov V, Kaneva R, Thyroff-Friesinger U, et al. Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol. 1998;54(6):469–74.

    Article  CAS  Google Scholar 

  38. Bijl MJ, Visser LE, van Schaik RH, Kors JA, Witteman JC, Hofman A, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in beta-blocker users. Clin Pharmacol Ther. 2009;85(1):45–50.

    Article  CAS  Google Scholar 

  39. Goryachkina K, Burbello A, Boldueva S, Babak S, Bergman U, Bertilsson L. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol. 2008;64(12):1163–73.

    Article  CAS  Google Scholar 

  40. Rau T, Heide R, Bergmann K, Wuttke H, Werner U, Feifel N, et al. Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics. 2002;12(6):465–72.

    Article  CAS  Google Scholar 

  41. Fux R, Morike K, Prohmer AM, Delabar U, Schwab M, Schaeffeler E, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther. 2005;78(4):378–87.

    Article  CAS  Google Scholar 

  42. Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, Eberst K, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536–44.

    Article  CAS  Google Scholar 

  43. Clark DW, Morgan AK, Waal-Manning H. Adverse effects from metoprolol are not generally associated with oxidation status. Br J Clin Pharmacol. 1984;18(6):965–7.

    Article  CAS  Google Scholar 

  44. Terra SG, Pauly DF, Lee CR, Patterson JH, Adams KF, Schofield RS, et al. beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005;77(3):127–37.

    Article  CAS  Google Scholar 

  45. Shihmanter R, Nulman I, Goland S, Caspi A, Bar-Haim A, Harary I, et al. Variation in the CYP2D6 genotype is not associated with carvedilol dose changes in patients with heart failure. J Clin Pharm Ther. 2014;39(4):432–8.

    Article  CAS  Google Scholar 

  46. Luzum JA, Lanfear DE. Pharmacogenetic risk scores for perindopril clinical and cost effectiveness in stable coronary artery disease: when are we ready to implement? J Am Heart Assoc. 2016;4(3):e003440.

    Google Scholar 

  47. Gillis NK, Innocenti F. Evidence required to demonstrate clinical utility of pharmacogenetic testing: the debate continues. Clin Pharmacol Ther. 2014;96(6):655–7.

    Article  CAS  Google Scholar 

  48. Ratain MJ, Johnson JA. Meaningful use of pharmacogenetics. Clin Pharmacol Ther. 2014;96(6):650–2.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

J.A.L. was supported by a Post-Doctoral Fellowship from the American Heart Association (14POST20100054) and the NIH student loan repayment program (L30 HL110279). P.F.B. is the James W. Overstreet Chair in Cardiology. J.P.K. was supported by a NIH Translational Scholar Career Advancement Award (K23 GM100372) and the NIH student loan repayment program (L32 MD006365). This work was also supported in part by NIH grant U01 GM92655 and a sub-award for the Translational Pharmacogenomics Project (TPP) via U01 HL105198 Pharmacogenomics of anti-platelet intervention-2 (PAPI-2) from NHLBI. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Center for Advancing Translational Sciences. The Coriell Personalized Medicine Collaborative was funded by the William G. Rohrer Foundation, the RNR Foundation, and a grant from the endowment of the Coriell Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine A. Luzum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 29 kb)

ESM 2

(DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzum, J.A., Sweet, K.M., Binkley, P.F. et al. CYP2D6 Genetic Variation and Beta-Blocker Maintenance Dose in Patients with Heart Failure. Pharm Res 34, 1615–1625 (2017). https://doi.org/10.1007/s11095-017-2104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2104-8

KEY WORDS

Navigation