Skip to main content
Log in

Design and In Vitro Evaluation of Bispecific Complexes and Drug Conjugates of Anticancer Peptide, LyP-1 in Human Breast Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

LyP-1, a nine-amino-acid tumor homing peptide, selectively binds to its cognate receptor, p32. Overexpression of p32 in certain tumors should allow use of LyP-1 as a targeting agent for the delivery of therapeutic or diagnostic agents. Peptide conjugates are developed for enhanced pre-targeting of MDA-MB-231 breast cancer cells with peptide-antibody bispecific complexes and targeting with multiple-drug/-fluorophore-conjugated nano-polymers.

Methods

LyP-1-anti-DTPA bispecific antibody complexes (LyP-1-bsAbCx) were generated by conjugation of anti-DTPA antibody and LyP-1. LyP-1–doxorubicin (Dox), Dox-DTPA-succinyl-polylysine (Dox-DSPL), Dox-DSPL-LyP-1, DTPA-Dox-poly glutamic acid (D-Dox-PGA) or DTPA-rhodamine conjugated polylysine (DSPL-RITC) were prepared. In vitro therapeutic efficacy and targeting by immunofluorescence in MDA-MB-231 breast cancer cells were assessed with Dox-LyP-1. Immunofluorescence visualization of cancer cells was evaluated after pretargeting with LyP-1-bsAbCx and targeting with DSPL-RITC.

Results

Cytotoxicity of Dox-LyP-1 conjugates was significantly greater than free doxorubicin (p < 0.0001). For fluorescent-labeled LyP-1, internalization occurred in 30 min in tumor cells. Fluorescence intensity of two-step targeted cells showed that pretargeting with LyP-1-bsAbC, followed by targeting with DSPL-RITC was greater than non-pretargeted DSPL-RITC (p < 0.05).

Conclusions

Peptide-conjugates are effective targeting agents for MDA-MB-231 breast cancer cells in culture. LyP-1-bsAbCx and Dox-LyP-1 conjugates may allow development of novel targeted cancer therapy and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADC:

Antibody-drug-conjugates

D-Dox-PGA:

Doxorubicin conjugated N-terminal DTPA conjugated PGA

DMF:

Dimethylformamide

Dox:

Doxorubicin hydrochloride-

Dox-DSPL:

Dox-DTPA-succinyl-polylysine

Dox-DSPL-LyP-1:

LyP-1 conjugated to Dox-DSPL

Dox-LyP-1:

LyP-1 conjugated with doxorubicin hydrochloride

D-PGA:

N-terminal DTPA conjugated PGA

DPL:

DTPA-poly-L-lysine

D-PL-LyP-1-Dox:

DTPA conjugated poly-L-lysine conjugated with LyP-1 and Dox

DPL-RITC:

RITC conjugated DPL

DSPL-LyP-1:

LyP-1 conjugated to DSPL

DSPL-RITC:

DTPA-succinyl rhodamine conjugated poly-L-lysine

DTPA:

Diethylenetriaminepentaacetic acid

DTPA-BSA:

DTPA conjugated bovine serum albumin

GAM-HRP:

Goat anti-mouse IgG antibody conjugated with HRP

LyP-1:

9 amino acid peptide ligand specific for mitochondrial membrane receptor p32.

LyP-1-bsAbCx:

LyP-1 conjugated anti-DTPA bispecific antibody complex

MWCO:

Molecular weight cut-off

NHS-Fluorescein:

5/6-carboxyfluorescein succinimidyl ester

PDCs:

Polymer drug conjugates

PGA:

Poly-L-glutamic acid

PL:

Poly-L-lysine

RITC:

Rhodamine B isothiocyanate

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TMA:

Therapeutic monoclonal antibodies

TNBS:

Tri-nitro benzene sulfonic acid

References

  1. Liang XJ, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol. 2010;596:467–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem. 2006;45(8):1198–215.

    Article  CAS  Google Scholar 

  3. Canal F, Sanchis J, Vicent MJ. Polymer-drug conjugates as nano-sized medicines. Curr Opin Biotechnol. 2011;22(6):894–900.

    Article  CAS  PubMed  Google Scholar 

  4. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    Article  CAS  PubMed  Google Scholar 

  5. Duncan R. Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol. 2011;22(4):492–501.

    Article  CAS  PubMed  Google Scholar 

  6. Greco F, Vicent MJ. Polymer-drug conjugates: current status and future trends. Front Biosci J Virtual Libr. 2008;13:2744–56.

    Article  CAS  Google Scholar 

  7. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.

    Article  CAS  Google Scholar 

  8. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.

    Article  CAS  PubMed  Google Scholar 

  9. Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.

    Article  Google Scholar 

  10. Sassoon I, Blanc V. Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol. 2013;1045:1–27.

    Article  PubMed  Google Scholar 

  11. Breij EC, de Goeij BE, Verploegen S, Schuurhuis DH, Amirkhosravi A, Francis J, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–26.

    Article  CAS  PubMed  Google Scholar 

  12. Chang CH, Sharkey RM, Rossi EA, Karacay H, McBride W, Hansen HJ, et al. Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol Cancer Ther. 2002;1(7):553–63.

    CAS  PubMed  Google Scholar 

  13. Westerlund K, Honarvar H, Tolmachev V, Eriksson KA. Design, preparation, and characterization of PNA-based hybridization probes for affibody-molecule-mediated pretargeting. Bioconjug Chem. 2015;26(8):1724–36.

    Article  CAS  PubMed  Google Scholar 

  14. Kuijpers WH, Bos ES, Kaspersen FM, Veeneman GH, van Boeckel CA. Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem. 1993;4(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Huang Q, Xiao J, Liu G, Dou S, Rusckowski M, et al. Novel DNA polymer for amplification pretargeting. ACS Med Chem Lett. 2015;6(9):972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mallikaratchy P, Gardner J, Nordstrom LUR, Veomett NJ, McDevitt MR, Heaney ML, et al. A self-assembling short oligonucleotide duplex suitable for pretargeting. Nucleic Acid Ther. 2013;23(4):289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patil V, Gada K, Panwar R, Majewski S, Tekabe Y, Varvarigou A, et al. In vitro demonstration of enhanced prostate cancer toxicity: pretargeting with Bombesin bispecific complexes and targeting with polymer-drug-conjugates. J Drug Target. 2013;21(10):1012–21.

    Article  CAS  PubMed  Google Scholar 

  18. Liu G, Dou S, Pretorius PH, Liu X, Chen L, Rusckowski M, et al. Tumor pretargeting in mice using MORF conjugated CC49 antibody and radiolabeled complimentary cMORF effector. Q J Nucl Med Mol Imaging. 2010;54(3):333–40.

    CAS  PubMed  Google Scholar 

  19. Sharkey RM, Chang CH, Rossi EA, McBride WJ, Goldenberg DM. Pretargeting: taking an alternate route for localizing radionuclides. Tumor Biol. 2012;33(3):591–600.

    Article  CAS  Google Scholar 

  20. van Duijnhoven SMJ, Rossin R, van den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody pretargeting with click chemistry in vivo. J Nucl Med. 2015;56(9):1422–8.

    Article  PubMed  Google Scholar 

  21. Khaw BA, Gada KS, Patil V, Panwar R, Mandapati S, Hatefi A, et al. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts: targeted polymer drug conjugates for cancer diagnosis and therapy. Eur J Nucl Med Mol Imaging. 2014;41(8):1603–16.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Dou S, Liu G, Liu X, Wang Y, Chen L, et al. Synthesis and in vitro characterization of a dendrimer-MORF conjugate for amplification pretargeting. Bioconjug Chem. 2008;19(8):1518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol. 2012;5:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhi Jie Li, CHC. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. 2012;10(Suppl 1):S1.

  25. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med. 2002;8(7):751–5.

    CAS  PubMed  Google Scholar 

  26. Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101(25):938–9386.

    Article  Google Scholar 

  27. Laakkonen P, Zhang L, Ruoslahti E. Peptide targeting of tumor lymph vessels. Ann N Y Acad Sci. 2008;1131:37–43.

    Article  CAS  PubMed  Google Scholar 

  28. Laakkonen P, Vuorinen K. Homing peptides as targeted delivery vehicles. Integr Biol UK. 2010;2(7–8):326–37.

    Article  CAS  Google Scholar 

  29. Fogal V, Zhang L, Krajewski S, Ruoslahti E. Mitochondrial/cell– surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res. 2008;68(17):7210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan F, Li X, Jiang C, Jin Q, Zhang Z, Shandas R, et al. A novel microfluidic chip for assessing dynamic adhesion behavior of cell-targeting microbubbles. Ultrasound Med Biol. 2014;40(1):148–57.

    Article  PubMed  Google Scholar 

  31. Gursoy RN, Cevik O. Design, characterization and in vitro evaluation of SMEDDS containing an anticancer peptide, linear LyP-1. Pharm Dev Technol. 2014;19(4):486–90.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Yu Y, Ma J, Zhang H, Zhang H, Wang X, et al. LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm. 2012;9(9):2646–57.

    Article  CAS  PubMed  Google Scholar 

  33. Herringson TP, Altin JG. Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm. 2011;411(1–2):206–14.

    Article  CAS  PubMed  Google Scholar 

  34. Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, et al. (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem. 2014;25(2):231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao D, Jiang M, Liu Z, Gu G, Hu Q, Kang T, et al. Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for antiglioblastoma therapy. Mol Pharm. 2014;11(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  36. Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, Young MJ, et al. Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. ACS Nano. 2011;5(4):2493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reichert JM, Dhimolea E. The future of antibodies as cancer drugs. Drug Discov Today. 2012;17(17–18):954–63.

    Article  CAS  PubMed  Google Scholar 

  38. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35.

  39. Cao J, Cui S, Li S, Du C, Tian J, Wan S, et al. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex. Cancer Res. 2013;73(4):1362–73.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK 2214-International Research Fellowship Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban-An Khaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timur, S.S., Bhattarai, P., Gürsoy, R.N. et al. Design and In Vitro Evaluation of Bispecific Complexes and Drug Conjugates of Anticancer Peptide, LyP-1 in Human Breast Cancer. Pharm Res 34, 352–364 (2017). https://doi.org/10.1007/s11095-016-2066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2066-2

KEY WORDS

Navigation