Skip to main content
Log in

Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles.

Methods

To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after 64Cu radiolabeling. PET imaging was performed on an apolipoprotein E–deficient (ApoE−/−) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice.

Results

All three 64Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted 64Cu-comb. Of the three nanoparticles, the 25% 64Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE−/− mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis.

Conclusion

The 25% 64Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

%ID/g:

Percent injected dose per gram of tissue

%ID/organ:

Percent injected dose per organ of tissue

°C:

Degree celsius

AIBN:

Azobisisobutyronitrile

ApoE−/− :

Apolipoprotein E-deficient

CANF:

C-type atrial natriuretic factor

DLS:

Dynamic light scattering

DMF:

N, N-Dimethylformamide

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7-tris(t-butyl acetate)

EDTA:

Ethylenediaminetetraacetic acid

F-FDG:

2-deoxy-2-[18F]-fluoro-D-glucose

FIG:

Figure

FPLC:

Fast performance liquid chromatography

GPC:

Gel permeation chromatography

H&E:

Hematoxyline and eosin

HCD:

High cholesterol diet

HPLC:

High pressure liquid chromatography

I.V.:

Intravenous

ITLC:

Instant thin layer chromatography

MPS:

Mononuclear phagocyte system

NPRC:

Natriuretic peptide clearance receptor

NPRs:

Natriuretic peptide receptors

PDI:

Polydispersity index

PEGMA:

Polyethylene glycol methacrylate

PET/CT:

Positron emission tomography/Computed tomography

PI:

Post injection

PMMA:

Poly(methyl methacrylate)

RAFT:

Reversible addition-fragmentation chain-transfer

RCP:

Radiochemical purity

SPECT:

Single photon emission computed tomography

WT:

Wildtype

REFERENCES

  1. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42(3):1147–235.

    Article  CAS  PubMed  Google Scholar 

  2. Yang X, Yang M, Pang B, Vara M, Xia Y. Gold nanomaterials at work in biomedicine. Chem Rev. 2015;115(19):10410–88.

    Article  CAS  PubMed  Google Scholar 

  3. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. Chem Rev. 2015;115(19):10967–1011.

    Article  CAS  PubMed  Google Scholar 

  4. Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin Immunol. 2015;160(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  5. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev. 2013;65(13–14):1816–27.

    Article  CAS  PubMed  Google Scholar 

  6. Omlor AJ, Nguyen J, Bals R, Dinh QT. Nanotechnology in respiratory medicine. Respir Res. 2015;16:64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18.

    Article  CAS  PubMed  Google Scholar 

  8. Young SW, Stenzel M, Jia-Lin Y. Nanoparticle-siRNA: a potential cancer therapy? Crit Rev Oncol Hematol. 2016;98:159–69.

    Article  PubMed  Google Scholar 

  9. Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine. 2016;12(2):317–32.

    CAS  PubMed  Google Scholar 

  10. Hofferberth SC, Grinstaff MW, Colson YL. Nanotechnology applications in thoracic surgery. Eur J Cardiothorac Surg. 2016.

  11. Stendahl JC, Sinusas AJ. Nanoparticles for cardiovascular imaging and therapeutic delivery, part 2: radiolabeled probes. J Nucl Med. 2015;56(11):1637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev. 2015;115(19):11147–90.

    Article  CAS  PubMed  Google Scholar 

  13. Welch MJ, Hawker CJ, Wooley KL. The advantages of nanoparticles for PET. J Nucl Med. 2009;50(11):1743–6.

    Article  CAS  PubMed  Google Scholar 

  14. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5(2):738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pressly ED, Rossin R, Hagooly A, Fukukawa K-I, Messmore BW, Welch MJ, et al. Structural Effects on the Biodistribution and Positron Emission Tomography (PET) imaging of well-defined 64Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules. 2007;8(10):3126–34.

    Article  CAS  PubMed  Google Scholar 

  17. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–7.

    Article  CAS  PubMed  Google Scholar 

  18. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    Article  CAS  PubMed  Google Scholar 

  19. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(9):2045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem. 2012;23(4):671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magnoni M, Ammirati E, Camici PG. Non-invasive molecular imaging of vulnerable atherosclerotic plaques. J Cardiol. 2015;65(4):261–9.

    Article  PubMed  Google Scholar 

  22. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  23. Sadat U, Jaffer FA, van Zandvoort MA, Nicholls SJ, Ribatti D, Gillard JH. Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation. 2014;130(9):786–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stacy MR, Sinusas AJ. Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin. 2016;34(1):167–77.

    Article  PubMed  Google Scholar 

  25. Stendahl JC, Sinusas AJ. Nanoparticles for cardiovascular imaging and therapeutic delivery, part 1: compositions and features. J Nucl Med. 2015;56(10):1469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tarkin JM, Joshi FR, Rajani NK, Rudd JH. PET imaging of atherosclerosis. Future Cardiol. 2015;11(1):115–31.

    Article  CAS  PubMed  Google Scholar 

  27. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    Article  CAS  PubMed  Google Scholar 

  28. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Casco VH, Veinot JP, de Bold Kuroski ML, Masters RG, Stevenson MM, de Bold AJ. Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem. 2002;50(6):799–809.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Abendschein D, Woodard GE, Rossin R, McCommis K, Zheng J, et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  31. Pressly ED, Pierce RA, Connal LA, Hawker CJ, Liu Y. Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug Chem. 2013;24(2):196–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Pressly ED, Abendschein DR, Hawker CJ, Woodard GE, Woodard PK, et al. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med. 2011;52(12):1956–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Pierce R, Luehmann HP, Sharp TL, Welch MJ. PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis. J Nucl Med. 2013;54(7):1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perrier S, Takolpuckdee P, Westwood J, Lewis DM. Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules. 2004;37(8):2709–17.

    Article  CAS  Google Scholar 

  35. Liu Y, Ibricevic A, Cohen JA, Cohen JL, Gunsten SP, Frechet JM, et al. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics. Mol Pharm. 2009;6(6):1891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, et al. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med. 2004;45(10):1776–83.

    CAS  PubMed  Google Scholar 

  37. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem. 2004;47(6):1465–74.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano. 2012;6(7):5880–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majmudar MD, Yoo J, Keliher EJ, Truelove JJ, Iwamoto Y, Sena B, et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work is supported by the National Heart, Lung and Blood Institute of the National Institutes of Health as a Program of Excellence in Nanotechnology (HHSN268201000046C). The characterization of nanoparticles was performed in the Central Facilities of the UCSB Materials Research Laboratory supported by the MRSEC Program of the National Science Foundation under award no. DMR1121053. No other potential conflict of interest relevant to this article was reported.

We thank Nicole Fettig, Margaret Morris, Amanda Roth, Lori Strong, and Ann Stroncek for their assistance with animals and imaging studies and Tom Voller, Evelyn Madrid, Paul Eisenbies, Efrem Mebrahtu, and Suzanne Lapi for 64Cu production. We thank the helpful discussion and comments from Dr. Richard Pierce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig J. Hawker.

Additional information

Pamela K. Woodard, Yongjian Liu and Eric D. Pressly contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodard, P.K., Liu, Y., Pressly, E.D. et al. Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb. Pharm Res 33, 2400–2410 (2016). https://doi.org/10.1007/s11095-016-1963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1963-8

KEY WORDS

Navigation