Skip to main content

Advertisement

Log in

Drug Release and Targeting: the Versatility of Polymethacrylate Nanoparticles for Peroral Administration Revealed by Using an Optimized In Vitro-Toolbox

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The contribution of permeability and drug release to drug targeting were investigated in the course of development of a nanosized formulation of the anti-inflammatory compound TMP-001, for the local treatment in the gastrointestinal tract.

Methods

TMP-001 was encapsulated by nanoprecipitation into Eudragit® RS 100. The permeability of these carriers was investigated in an Ussing chamber model and the release rate was determined under biorelevant conditions. Formulation toxicity and particle-cell-interaction were investigated by flow cytometry, fluorescence and electron microscopy. Furthermore, spray drying was performed.

Results

Effective internalization of Eudragit®-nanoparticles into cancer cells was demonstrated. A burst release of the nanoparticles implied poor interaction of TMP-001 with Eudragit®. A sustained release (70.5% release after 30 min compared to 98.0% for the API) was accomplished after spray drying yielded an increased particle size. Recovery rate of TMP-001 after spray drying was 94.2 ± 5.9%.

Conclusion

The release of API from polymeric nanoparticles contributes profoundly to the in vivo-performance of drug delivery devices in the gastrointestinal tract. The impact of drug-polymer interaction and particle size was analyzed. Sustained release of TMP-001 could only be achieved by increasing particle size. Therefore, biorelevant release testing has been demonstrated to be a valid tool for nanoformulation design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

CLSM:

Confocal laser scanning microscopy

COX-2:

Cyclooxygenase-2

DAPI:

4′,6-Diamidin-2-phenylindol

DMEM:

Dulbecco’s Modified Eagle Medium

FCS:

Fetal calf serum

GI:

Gastrointestinal

mTHPC:

Meso-tetrakis(3-hydroxyphenyl)chlorin

MWCO:

Molecular weight cut-off

PBS:

Phosphate buffered saline

PCS:

Photon correlation spectroscopy

PDI:

Polydispersity index

PTFE:

Polytetrafluoroethylene

rpm:

Rotations per minute

SD:

Standard deviation

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

WST:

Water soluble tetrazolium

References

  1. Gaumet M, Gurny R, Delie F. Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity. Int J Pharm. 2010;390(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  2. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kreuter J. Peroral administration of nanoparticles. Adv Drug Deliv Rev. 1991;7(1):71–86.

    Article  CAS  Google Scholar 

  4. Niebel W, Walkenbach K, Beduneau A, Pellequer Y, Lamprecht A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J Control Release. 2012;160(3):659–65.

    Article  CAS  PubMed  Google Scholar 

  5. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol. 2014;12(10):1605–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–93.

    Article  CAS  PubMed  Google Scholar 

  7. Rabiskova M, Bautzova T, Gajdziok J, Dvorackova K, Lamprecht A, Pellequer Y, et al. Coated chitosan pellets containing rutin intended for the treatment of inflammatory bowel disease: in vitro characteristics and in vivo evaluation. Int J Pharm. 2012;422(1-2):151–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Plapied L, Vandermeulen G, Vroman B, Preat V, des Rieux A. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery. Int J Pharm. 2010;398(1–2):210–8.

    Article  CAS  PubMed  Google Scholar 

  10. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    Article  CAS  PubMed  Google Scholar 

  13. Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 2014;71:58–76.

    Article  PubMed  Google Scholar 

  14. Rajapaksa TE, Stover-Hamer M, Fernandez X, Eckelhoefer HA, Lo DD. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J Control Release. 2010;142(2):196–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J Control Release. 2013;165(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  16. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568–73.

    Article  CAS  PubMed  Google Scholar 

  17. Lehr C-M, Bouwstra JA, Tukker JJ, Junginger HE. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat—a comparative study with copolymers and blends based on poly(acrylic acid). J Control Release. 1990;13(1):51–62.

    Article  CAS  Google Scholar 

  18. Wacker M. Nanocarriers for intravenous injection-the long hard road to the market. Int J Pharm. 2013;457(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  19. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, et al. Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci. 2009;38(4):405–13.

    Article  PubMed  Google Scholar 

  20. Beyer S, Xie L, Grafe S, Vogel V, Dietrich K, Wiehe A, et al. Bridging laboratory and large scale production: preparation and in vitro-evaluation of photosensitizer-loaded nanocarrier devices for targeted drug delivery. Pharm Res. 2015;32:1714–26.

    Article  CAS  PubMed  Google Scholar 

  21. Dressman JB, Berardi RR, Elta GH, Gray TM, Montgomery PA, Lau HS, et al. Absorption of flurbiprofen in the fed and fasted states. Pharm Res. 1992;9(7):901–7.

    Article  CAS  PubMed  Google Scholar 

  22. Moulari B, Beduneau A, Pellequer Y, Lamprecht A. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release. 2014;188:9–17.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015;13(1):11–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5 Suppl):146–56.

    Article  Google Scholar 

  25. Crcarevska MS, Dodov MG, Goracinova K. Chitosan coated Ca–alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur J Pharm Biopharm. 2008;68(3):565–78.

    Article  Google Scholar 

  26. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  CAS  PubMed  Google Scholar 

  27. Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–77.

    Article  CAS  PubMed  Google Scholar 

  28. des Rieux A, Ragnarsson EG, Gullberg E, Preat V, Schneider YJ, Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25(4–5):455–65.

    Article  PubMed  Google Scholar 

  29. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11(2):S73–80.

    Article  CAS  PubMed  Google Scholar 

  30. Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  31. Akhlaq M, Khan GM, Wahab A, Khan A, Hussain A, Nawaz A, et al. A simple high-performance liquid chromatographic practical approach for determination of flurbiprofen. J Adv Pharm Technol Res. 2011;2(3):151–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ronzani C, Safar R, Diab R, Chevrier J, Paoli J, Abdel-Wahhab MA, et al. Viability and gene expression responses to polymeric nanoparticles in human and rat cells. Cell Biol Toxicol. 2014;30(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  33. Safar R, Ronzani C, Diab R, Chevrier J, Bensoussan D, Grandemange S, et al. Human monocyte response to S-nitrosoglutathione-loaded nanoparticles: uptake, viability, and transcriptome. Mol Pharm. 2015;12(2):554–61.

    Article  CAS  PubMed  Google Scholar 

  34. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 2009;137(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  35. Porsch B, Hillang I, Karlsson A, Sundelof LO. Ion-exclusion controlled size-exclusion chromatography of methacrylic acid-methyl methacrylate copolymers. J Chromatogr A. 2000;872(1–2):91–9.

    Article  CAS  PubMed  Google Scholar 

  36. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.

    Article  PubMed  Google Scholar 

  37. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  38. Castelli F, Messina C, Sarpietro MG, Pignatello R, Puglisi G. Flurbiprofen release from Eudragit RS and RL aqueous nanosuspensions: a kinetic study by DSC and dialysis experiments. AAPS PharmSciTech. 2002;3(2).

  39. Narisawa S, Nagata M, Hirakawa Y, Kobayashi M, Yoshino H. An organic acid-induced sigmoidal release system for oral controlled-release preparations. 2. Permeability enhancement of Eudragit RS coating led by the physicochemical interactions with organic acid. J Pharm Sci. 1996;85(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  40. Donbrow M, Hoffman A, Benita S. Gradation of microcapsule wall porosity by deposition of polymer mixtures (Eudragit RL and Eudragit RS). Phase separation of polymer mixtures and effects of external media and conditions on release. J Microencapsul. 1995;12(3):273–85.

    Article  CAS  PubMed  Google Scholar 

  41. Faisant N, Siepmann J, Benoit JP. PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur J Pharm Sci. 2002;15(4):355–66.

    Article  CAS  PubMed  Google Scholar 

  42. Mauludin R, Muller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1–2):202–9.

    Article  CAS  PubMed  Google Scholar 

  43. Onishi H. Pharmacokinetic evaluation of chitosan-succinyl-prednisolone conjugate microparticles as a colonic delivery system: comparison with enteric-coated conjugate microparticles. Health. 2014;6(11):1286–95.

  44. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination. Adv Drug Deliv Rev. 2001;52(2):139–44.

    Article  PubMed  Google Scholar 

  45. Navabi N, McGuckin MA, Linden SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One. 2013;8(7).

  46. Navabi N, McGuckin MA, Lindén SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS ONE. 2013;8(7), e68761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. McCool DJ, Marcon MA, Forstner JF, Forstner GG. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem J. 1990;267(2):491–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Beduneau A, Tempesta C, Fimbel S, Pellequer Y, Jannin V, Demarne F, et al. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm. 2014;87(2):290–8.

    Article  CAS  PubMed  Google Scholar 

  49. Junemann D, Dressman J. Analytical methods for dissolution testing of nanosized drugs. J Pharm Pharmacol. 2012;64(7):931–43.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work has been supported by the Else Kröner-Fresenius Foundation (EKFS), Research Training Group Translational Research Innovation—Pharma (TRIP). Moreover, the authors acknowledge LOEWE initiative of the State of Hessen for financial support to the Research Center for Translational Medicine and Pharmacology. The analytical part of this work was supported by the DFG (German Research Association) grant SFB1039 Z01. The authors want to acknowledge Prof. Jennifer B. Dressman and Prof. Dieter Steinhilber for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. Wacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyer, S., Moosmann, A., Kahnt, A.S. et al. Drug Release and Targeting: the Versatility of Polymethacrylate Nanoparticles for Peroral Administration Revealed by Using an Optimized In Vitro-Toolbox. Pharm Res 32, 3986–3998 (2015). https://doi.org/10.1007/s11095-015-1759-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1759-2

KEY WORDS

Navigation