Skip to main content

Advertisement

Log in

Laronidase-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Promising Formulation for a More Effective Treatment of Mucopolysaccharidosis Type I

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Mucopolysaccharidosis I is a genetic disorder caused by alpha-L-iduronidase deficiency. Its primary treatment is enzyme replacement therapy (ERT), which has limitations such as a high cost and a need for repeated infusions over the patient's lifetime. Considering that nanotechnological approaches may enhance enzyme delivery to organs and can reduce the dosage thereby enhancing ERT efficiency and/or reducing its cost, we synthesized laronidase surface-functionalized lipid-core nanocapsules (L-MLNC).

Methods

L-MLNCs were synthesized by using a metal complex. Size distributions were evaluated by laser diffraction and dynamic light scattering. The kinetic properties, cytotoxicity, cell uptake mechanisms, clearance profile and biodistribution were evaluated.

Results

Size distributions showed a D[4,3] of 134 nm and a z-average diameter of 71 nm. L-MLNC enhanced the Vmax and Kcat in comparison with laronidase. L-MLNC is not cytotoxic, and nanocapsule uptake by active transport is not only mediated by mannose-6-phosphate receptors. The clearance profile is better for L-MLNC than for laronidase. A biodistribution analysis showed enhanced enzyme activity in different organs within 4 h and 24 h for L-MLNC.

Conclusions

The use of lipid-core nanocapsules as building blocks to synthesize surface-functionalized nanocapsules represents a new platform for producing decorated soft nanoparticles that are able to modify drug biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BS:

Backscattering

CNS:

Central Nervous System

ERT:

Enzyme Replacement Therapy

IDUA:

Alpha-L-iduronidase

L1-MLNC1 :

Multiple-wall nanocapsule with 0.05% chitosan and 11 μg/mL of laronidase

L1-MLNC2 :

Multiple-wall nanocapsule with 0.075% chitosan and 11 μg/mL of laronidase

L2-MLNC1 :

Multiple-wall nanocapsule with 0.05% chitosan and 96 μg/mL of laronidase

L2-MLNC2 :

Multiple-wall nanocapsule with 0.075% chitosan and 96 μg/mL of laronidase

L-MLNC:

Laronidase surface-functionalized lipid-core nanocapsules

LNC:

Lipid core nanocapsules

LNC-CS0.03 :

LNC coated with 0.03% (w/v) chitosan

LNC-CS0.05 :

LNC coated with 0.05% (w/v) chitosan

LNC-CS0.075 :

LNC coated with 0.075% (w/v) chitosan

MPS I:

Mucopolysaccharidosis type I

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PCS:

Photon Correlation Spectroscopy

PDI:

Polydispersity Index

T:

Transmission

∆BS:

Relative Backscattering

References

  1. Tan ML, Choong PF, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31(1):184–93.

    Article  CAS  PubMed  Google Scholar 

  2. Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release. 2000;65(1–2):261–9.

    Article  CAS  PubMed  Google Scholar 

  3. Torchilin VP. Drug targeting. Eur J Pharm Sci. 2000;11 Suppl 2:S81–91.

    Article  CAS  PubMed  Google Scholar 

  4. Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  5. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Ver. 2001;47(1):65–81.

    Article  CAS  Google Scholar 

  6. Di Marco M, Shamsuddin S, Razak KA, et al. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int J Nanomedicine. 2010;5:37–49.

    PubMed Central  PubMed  Google Scholar 

  7. Jonkheijn P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl. 2008;47(50):9618–47.

    Article  Google Scholar 

  8. Rana S, Yeh YC, Rotello VM. Engineering the nanoparticle–protein interface: applications and possibilities. Curr Opin Chem Biol. 2010;14(6):828–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jager E, Venturini CG, Poletto FS, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5(1):130–40.

    Article  CAS  PubMed  Google Scholar 

  10. Venturini CG, Jäger E, Oliveira CP, et al. Formulation of lipid core nanocapsules. Colloids and Surf A: Physicochem Eng Aspects. 2011;375:200–8.

    Article  CAS  Google Scholar 

  11. Jornada DS, Fiel LA, Bueno K, et al. Lipid-core nanocapsules: mechanism of self-assembly, control of size and loading capacity. Soft Matter. 2012;8:6646–55.

    Article  CAS  Google Scholar 

  12. Fiel LA, Rebelo LM, Santiago TM, et al. Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter. 2011;7:7240–7.

    Article  CAS  Google Scholar 

  13. Bernardi A, Frozza RL, Horn AP, et al. Protective effects of indomethacin-loaded nanocapsules against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of neuroinflammation. Neurochem Int. 2010;57(6):629–36.

    Article  CAS  PubMed  Google Scholar 

  14. Bernardi A, Zilberstein AC, Jager E, et al. Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats. Br J Pharmacol. 2009;158(4):1104–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bernardi A, Braganhol E, Jager E, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 2009;281(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  16. Ourique AF, Azoubel S, Ferreira CV, et al. Lipid-core nanocapsules as a nanomedicine for parenteral administration of tretinoin: development and in vitro antitumor activity on human myeloid leukaemia cells. J Biomed Nanotechnol. 2010;6(3):214–23.

  17. Frozza RL, Bernardi A, Paese K, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol. 2010;6(6):3694–703.

    Article  Google Scholar 

  18. Bender EA, Adorne MD, Colome LM, et al. Hemocompatibility of poly(epsilon-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1–2):271–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bender EA, Cavalcante MF, Adorne MD, et al. New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(-)-functionalized nanocapsules. Res: Pharm; 2014. doi:10.1007/s11095-014-1392-5.

    Google Scholar 

  20. Reynaud F, Tsapis N, Deyme M, et al. Spray-dried chitosan-metal microparticles for ciprofloxacin adsorption: Kinetic and equilibrium studies. Soft Matter. 2011;7:7304–12.

    Article  CAS  Google Scholar 

  21. Neufeld EF, Muenzer J. The Mucopolysaccharidosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill; 2001. p. 3421–52.

    Google Scholar 

  22. Giugliani R, Ferderhen A, Carvalho CG, Artigalas O. Enzyme replacement therapy for Mucopolysaccharidosis type I: Laronidase. Pediatr Health. 2010;4:133–45.

    Article  CAS  Google Scholar 

  23. Souza MV, Krug BC, Picon P, Schwartz IVD. Medicamentos de alto custo para doenças raras no Brasil: o exemplo das doenças lisossômicas. Ciência e Saúde Coletiva. 2010;15(3):3443–554.

    Article  PubMed  Google Scholar 

  24. Giugliani R, Federhen A, Muñoz Rojas MV, et al. Enzyme replacement therapy for mucopolysaccharidoses I, II and VI: recommendations from a group of Brazilian F experts. Rev Assoc Med Bras. 2010;56(3):271–7.

    Article  PubMed  Google Scholar 

  25. Mengual O, Meunier G, Cayre I, Puech K, Snabre P. TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta. 1999;50(2):445–56.

    Article  CAS  PubMed  Google Scholar 

  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  PubMed  Google Scholar 

  27. Hopwood JJ, Muller V, Smithson A, Baggett N. A fluorometric assay using 4-methylumbelliferyl alpha-L-iduronide for the estimation of alpha-L-iduronidase activity and the detection of Hurler and Scheie syndromes. Clin Chim Acta. 1979;92(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  29. The European Commission, 2011/696/EU, Official Journal of the European Union, ISSN 1977-0677. 2011;54:L275.

  30. Siqueira NM, Contri RV, Paese K, et al. Innovative sunscreen formulation based on benzophenone-3-loaded chitosan-coated polymeric nanocapsules. Skin Pharmacol Physiol. 2011;24(3):166–74.

    Article  CAS  PubMed  Google Scholar 

  31. Nelson DL, Cox MM. Enzimas. In: Nelson DL, Cox MM, editors. Princípios de bioquímica de Lehninger. São Paulo: Sarvier; 2006. p. 202–12.

    Google Scholar 

  32. Celia C, Trapasso E, Cosco D, Paolino D, Fresta M. Turbiscan lab expert analysis of the stability of ethosomes and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids Surf B: Biointerfaces. 2009;72(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  33. Ipe BI, Niemeyer CM. Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts. Angew Chem Int Ed Engl. 2006;45(3):504–7.

    Article  CAS  PubMed  Google Scholar 

  34. de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E. Nonnatural amino acids for site-specific protein conjugation. Bioconjug Chem. 2009;20(7):1281–95.

    Article  PubMed  Google Scholar 

  35. Hong R, Fischer NO, Verma A, et al. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc. 2004;126(3):739–43.

    Article  CAS  PubMed  Google Scholar 

  36. Abad JM, Mertens SF, Pita M, Fernandez VM, Schiffrin DJ. Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc. 2005;127(15):5689–94.

    Article  CAS  PubMed  Google Scholar 

  37. Rempel BP, Clarke LA, Withers SG. A homology model for human alpha-l-iduronidase: insights into human disease. Mol Genet Metab. 2005;85(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Giugliani R, Rojas VM, Martins AM, et al. A dose-optimization trial of laronidase (Aldurazyme) in patients with mucopolysaccharidosis I. Mol Genet Metab. 2009;96(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  40. Garnacho C, Dhami R, Simone E, et al. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther. 2008;325(2):400–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu J, Serrano D, Bhowmick T, et al. Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease. J Control Release. 2011;149:323–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful for the financial support of the Fundo de Incentivo à Pesquisa (FIPE-HCPA), PRONEX and PRONEM FAPERGS/CNPq, INCT-if CNPq, Universal CNPq, FAPERGS and Rede Nanobiotec CAPES. The sponsors had no involvement in the study design, data collection, analysis, interpretation, writing and decision to publish the data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ursula Matte or Adriana Raffin Pohlmann.

Additional information

Fabiana Quoos Mayer and Márcia Duarte Adorne contributed equally to this study

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Particle size distribution profiles (μm) by laser diffraction (Mastersizer 2000, Malvern): (A) LNC-CS0.03; (B) LNC-CS0.05 and (C) LNC-CS0.075. (JPEG 73 kb)

Supplementary figure 2

Relative backscattering profiles of multiple wall nanocapsules over 24 h. A. L1-MLNC1 and B. L2-MLNC2. Only one profile of each suspension is shown. Both formulations showed the same profile. No significant changes were observed in the BS signal at the center of the cuvette. (JPEG 34 kb)

Supplementary figure 3

A cytotoxicity analysis of laronidase, L1-MLNC1 and LNC-CS0.05. Laronidase caused no cytotoxicity at any of the tested concentrations. L1-MLNC1 and LNC-CS0.05 caused approximately 30% cell death at higher concentrations and 90-100% cell viability was reached at concentrations lower than 0.0232 μg/mL. (GIF 55 kb)

High resolution image (TIFF 7605 kb)

Supplementary figure 4

Enzyme uptake by the MPS I patient’s fibroblasts. Laronidase and L1-MLNC1 could be internalized, restoring enzyme activity to the MPS I patient’s fibroblasts. *p < 0.01 compared with Control group, ANOVA with Tukey’s post hoc test. (GIF 21 kb)

High resolution image (TIFF 6883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, F.Q., Adorne, M.D., Bender, E.A. et al. Laronidase-Functionalized Multiple-Wall Lipid-Core Nanocapsules: Promising Formulation for a More Effective Treatment of Mucopolysaccharidosis Type I. Pharm Res 32, 941–954 (2015). https://doi.org/10.1007/s11095-014-1508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1508-y

KEY WORDS

Navigation