Skip to main content

Advertisement

Log in

Prediction of Passive Drug Permeability Across the Blood-Retinal Barrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this study is to develop a computational model of the physical barrier function of the outer blood-retinal barrier (BRB), which is vital for normal retinal function. To our best knowledge no comprehensive models of BRB has been reported.

Methods

The model construction is based on the three-layered structure of the BRB: retinal pigment epithelium (RPE), Bruch’s membrane and choriocapillaris endothelium. Their permeabilities were calculated based on the physical theories and experimental material and permeability studies in the literature, which were used to describe diffusional hindrance in specific environments.

Results

Our compartmental BRB model predicts permeabilities with magnitudes similar to the experimental values in the literature. However, due to the small number and varying experimental conditions there is a large variability in the available experimental data, rendering validation of the model difficult. The model suggests that the paracellular pathway of the RPE largely defines the total BRB permeability.

Conclusions

Our model is the first BRB model of its level and combines the present knowledge of the BRB barrier function. Furthermore, the model forms a platform for the future model development to be used for the design of new drugs and drug administration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Å:

Angstrom (1 Å = 1 × 10−10 m)

AMD:

Age-related macular degeneration

BRB:

Outer blood-retinal barrier

BrM:

Bruch’s membrane

CE:

Choriocapillaris endothelium

Da:

Dalton (1 Da = 1.66 × 10−27 kg)

D 0 :

free diffusion coefficient (m2 s−1)

D eff,m :

Effective diffusion coefficient within the matrix m (m2 s−1)

D lat :

Lateral diffusion coefficient within the membrane (m2 s−1)

D ICL :

Effective diffusion coefficient within ICL (m2 s−1)

d ICL :

ICL thickness (m)

D OCL :

Effective diffusion coefficient within OCL (m2 s−1)

d OCL :

OCL thickness (m)

D m :

Diffusion coefficient within the matrix m (m2 s−1)

d lat,i :

Diffusion distance of ith part of the lateral diffusion pathway (m s−1)

d RPE :

RPE cell flat-to-flat diameter (m)

d TJp :

TJ pore separation (m)

f :

Adjusted fiber volume fraction

F m :

Hydrodynamic interactions in matrix m

h fen :

Fenestration height (m)

h LS :

Lateral space height (m)

H p p ):

Pore hindrance factor

h pore :

Pore height (m)

h RPE :

RPE cell height (m)

H s s ):

Slit hindrance factor

h slit :

Slit height (m)

h TJ :

TJ region height (m)

h TJs :

TJ strand height (m)

h TJss :

TJ strand separation (m)

ICL:

Inner collagenous layer

K mem :

Membrane distribution coefficient

k B :

Boltzmann’s constant (1.38 × 10−23 J K−1)

K D :

Octanol-water distribution coefficient

l cb :

Cell boundary length per unit area (m m−2)

M s :

Solute’s molecular mass (Da)

m :

Membrane size selectivity (Da−1)

n TJs :

TJ strand number

OCL:

Outer collagenous layer

P BRB :

BRB permeability coefficient (m s−1)

P BrM :

BrM permeability coefficient (m s−1)

P cyt :

Cytoplasm permeability coefficient (m s−1)

P CE :

CE permeability coefficient (m s−1)

P ICL :

ICL permeability coefficient (m s−1)

P lat :

Lateral diffusion transcellular permeability coefficient (m s−1)

P OCL :

OCL permeability coefficient (m s−1)

P lat,i :

Permeability coefficient of ith part of the lateral diffusion pathway (m s−1)

P LS :

Lateral space permeability coefficient (m s−1)

P mem :

Membrane permeability coefficient (m s−1)

P 0 mem :

Membrane permeability coefficient of a theoretical infinitely small molecule (m s−1)

P para :

Paracellular permeability coefficient (m s−1)

P pore :

Pore permeability coefficient (m s−1)

P RPE :

RPE permeability coefficient (m s−1)

P slit :

Slit permeability coefficient (m s−1)

P TJ :

TJ permeability coefficient (m s−1)

P TJl :

TJ leak pathway permeability coefficient (m s−1)

P TJp :

TJ pore pathway permeability coefficient (m s−1)

P TJs :

TJ strand permeability coefficient (m s−1)

P TJss :

Permeability coefficient of the space between TJ strands (m s−1)

P tr :

Transverse transcellular permeability coefficient (m s−1)

P trans :

Transcellular permeability coefficient (m s−1)

RPE:

Retinal pigment epithelium

r CF :

Collagen fibril radius (m)

r dia :

Diaphragm pore radius (m)

r f :

Fiber radius (m)

r PG :

Proteoglycan radius (m)

r pore :

Pore radius (m)

r* RPE :

Average RPE cell radius (m)

r s :

Solute molecule’s radius (m)

r TJp :

TJ pore radius (m)

S m :

Steric interactions in matrix m

T :

Absolute temperature (K)

TJ:

Tight junctions

τ RPE :

RPE lateral space tortuosity

W LS :

Lateral space half-width (m)

W slit :

Slit half-width (m)

α leak :

TJ leak parameter

ε lat,i :

Hindrance factor of ith part of the lateral diffusion pathway (m s−1)

ε LS :

Relative surface area of the lateral space

ε pore :

Relative surface area of the pores

ε slit :

Relative surface area of the slit

ε TJp :

Relative surface area of the TJ pores

φ CF,ICL :

Collagen volume fraction in ICL

φ CF,OCL :

Collagen volume fraction in OCL

Φ m :

Partition coefficient between the matrix m and solvent

φ f :

Fiber volume fraction

φ PG,ICL :

Proteoglycan volume fraction in ICL

φ PG,OCL :

Proteoglycan volume fraction in OCL

ε dia :

Relative surface area of the diaphragm pores

η:

Dynamic viscosity (Pa s)

REFERENCES

  1. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    Article  PubMed  CAS  Google Scholar 

  2. Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295–317.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13(3–4):135–43.

    PubMed  Google Scholar 

  4. Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  5. Pitkänen L, Ranta V-P, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Investig Ophthalmol Vis Sci. 2005;46(2):641–6.

    Article  Google Scholar 

  6. Mac Gabhann F, Demetriades AM, Deering T, Packer JD, Shah SM, Duh E, et al. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng. 2007;35(4):615–30.

    Article  PubMed  Google Scholar 

  7. Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Investig Ophthalmol Vis Sci. 2008;49(1):320–32.

    Article  Google Scholar 

  8. Ranta V-P, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  9. Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25(11):2685–96.

    Article  PubMed  CAS  Google Scholar 

  10. Haghjou N, Abdekhodaie MJ, Cheng Y-L. Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment. Pharm Res. 2013;30(1):41–59.

    Article  PubMed  CAS  Google Scholar 

  11. Edwards A, Prausnitz MR. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AIChE J. 1998;44(1):214–25.

    Article  CAS  Google Scholar 

  12. Edwards A, Prausnitz MR. Predicted permeability of the cornea to topical drugs. Pharm Res. 2001;18(11):1497–508.

    Article  CAS  Google Scholar 

  13. Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release. 2003;86(1):69–92.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1(2):1–16.

    Article  Google Scholar 

  15. Guo P, Weinstein AM, Weinbaum S. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J Physiol Ren Physiol. 2003;285(2):F241–57.

    CAS  Google Scholar 

  16. Goldbaum MH, Madden K. A new perspective on Bruch’s membrane and the retinal pigment epithelium. Br J Ophthalmol. 1982;66(1):17–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Bearer EL, Orci L. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol. 1985;100(2):418–28.

    Article  PubMed  CAS  Google Scholar 

  18. Ho NFH, Raub TJ, Burton PS, Barsuhn CL, Audus KL, Borchardt RT. Quantitative approaches to delineate passive transport mechanisms in cell culture monolayers. In: Amidon GL, Lee PI, Topp EM, editors. Transport processes in pharmaceutical systems. New York: Marcel Dekker, Inc; 2000. p. 219–316.

    Google Scholar 

  19. Johansson L, Löfroth J-E. Diffusion and interaction in gels and solutions. 4. Hard sphere Brownian dynamics simulations. J Chem Phys. 1993;98(9):7471–9.

    Article  CAS  Google Scholar 

  20. Dechadilok P, Deen WM. Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res. 2006;45(21):6953–9.

    Article  CAS  Google Scholar 

  21. Lieb WR, Stein WD. Non-Stokesian nature of transverse diffusion within human red cell membranes. J Membr Biol. 1986;92(2):111–9.

    Article  PubMed  CAS  Google Scholar 

  22. Verkman AS. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci. 2002;27(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  23. Mitragotri S. A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on Scaled Particle Theory. J Pharm Sci. 2002;91(3):744–52.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson EM, Berk DA, Jain RK, Deen WM. Diffusion and partitioning of proteins in charged agarose gels. Biophys J. 1995;68(4):1561–8. Elsevier.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ogston AG. The spaces in a uniform random suspension of fibres. Trans Faraday Soc. 1958;54(1):1754–7.

    Article  Google Scholar 

  26. Phillips RJ. A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys J. 2000;79(6):3350–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Clague DS, Phillips RJ. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys Fluids. 1996;8(7):1720–31.

    Article  CAS  Google Scholar 

  28. Amsden B. Solute diffusion within hydrogels. Mechanisms and Models. Macromolecules. 1998;31(23):8382–95.

    Article  CAS  Google Scholar 

  29. Avdeef A. Leakiness and size exclusion of paracellular channels in cultured epithelial cell monolayers-interlaboratory comparison. Pharm Res. 2010;27(3):480–9.

    Article  PubMed  CAS  Google Scholar 

  30. Sutherland WLXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos Mag. 1905;9(54):781–5.

    Article  CAS  Google Scholar 

  31. Garron LK. The ultrastructure of the retinal pigment epithelium with observations on the choriocapillaris and Bruch’s membrane. Trans Am Ophthalmol Soc. 1963;61:545–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Prünte C, Kain HL. Enzymatic digestion increases permeability of the outer blood-retinal barrier for high-molecular-weight substances. Graefes Arch Clin Exp Ophthalmol. 1995;233(2):101–11.

    Article  PubMed  Google Scholar 

  33. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D, et al. Na, K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol. 2003;284(6):C1497–507.

    Article  PubMed  CAS  Google Scholar 

  34. O’Leary TJ. Lateral diffusion of lipids in complex biological membranes. Proc Natl Acad Sci U S A. 1987;84(2):429–33.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ogston AG, Preston BN, Wells JD. On the transport of compact particles through solutions of chain-polymers. Proc R Soc A Math Phys Eng Sci. 1973;333(1594):297–316.

    Article  CAS  Google Scholar 

  36. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol. 2001;281(2):C388–97.

    PubMed  CAS  Google Scholar 

  37. Hirsch M, Prenant G, Renard G. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods. Exp Eye Res. 2001;72(2):123–35.

    Article  PubMed  CAS  Google Scholar 

  38. Melamed S, Ben-Sira I, Ben-Shaul Y. Ultrastructure of fenestrations in endothelial choriocapillaries of the rabbit—a freeze-fracturing study. Br J Ophthalmol. 1980;64(7):537–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Federman JL. The fenestrations of the choriocapillaris in the presence of choroidal melanoma. Trans Am Ophthalmol Soc. 1982;80:498–516.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Kadam RS, Cheruvu NPS, Edelhauser HF, Kompella UB. Sclera-choroid-RPE transport of eight β-blockers in human, bovine, porcine, rabbit, and rat models. Investig Ophthalmol Vis Sci. 2011;52(8):5387–99.

    Article  CAS  Google Scholar 

  41. Steuer H, Jaworski A, Elger B, Kaussmann M, Keldenich J, Schneider H, et al. Functional characterization and comparison of the outer blood-retina barrier and the blood–brain barrier. Investig Ophthalmol Vis Sci. 2005;46(3):1047–53.

    Article  Google Scholar 

  42. Cheruvu NPS, Kompella UB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch’s layer. Investig Ophthalmol Vis Sci. 2006;47(10):4513–22.

    Article  Google Scholar 

  43. Pescina S, Santi P, Ferrari G, Padula C, Cavallini P, Govoni P, et al. Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery. Eur J Pharm Sci. 2012;46(5):475–83.

    Article  PubMed  CAS  Google Scholar 

  44. Hussain A, Rowe L, Marshall J. Age-related alterations in the diffusional transport of amino acids across the human Bruch’s-choroid complex. J Opt Soc Am A. 2002;19(1):166.

    Article  CAS  Google Scholar 

  45. Peng S, Rahner C, Rizzolo LJ. Apical and basal regulation of the permeability of the retinal pigment epithelium. Investig Ophthalmol Vis Sci. 2003;44(2):808–17.

    Article  Google Scholar 

  46. Warnke PH, Alamein M, Skabo S, Stephens S, Bourke R, Heiner P, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013. doi:10.1016/j.actbio.2013.07.029.

    PubMed  Google Scholar 

  47. Johnson EM, Deen WM. Electrostatic effects on the equilibrium partitioning of spherical colloids in random fibrous media. J Colloid Interface Sci. 1996;178(2):749–56.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The study was financially supported by the Academy of Finland (grant numbers 252225 and 260375) and TEKES—the Finnish Funding Agency for Technology and Innovation (grant number 718/31/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aapo Tervonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tervonen, A., Vainio, I., Nymark, S. et al. Prediction of Passive Drug Permeability Across the Blood-Retinal Barrier. Pharm Res 31, 2297–2311 (2014). https://doi.org/10.1007/s11095-014-1325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1325-3

KEY WORDS

Navigation