Skip to main content

Advertisement

Log in

The Importance of Villous Physiology and Morphology in Mechanistic Physiologically-Based Pharmacokinetic Models

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Existing PBPK models incorporating intestinal first-pass metabolism account for effect of drug permeability on accessible absorption surface area by use of “effective” permeability, P eff , without adjusting number of enterocytes involved in absorption or proportion of intestinal CYP3A involved in metabolism. The current model expands on existing models by accounting for these factors.

Methods

The PBPK model was developed using SAAM II. Midazolam clinical data was generated at GlaxoSmithKline.

Results

The model simultaneously captures human midazolam blood concentration profile and previously reported intestinal availability, using values for CYP3A CLu int , permeability and accessible surface area comparable to literature data. Simulations show: (1) failure to distinguish absorbing from non-absorbing enterocytes results in overestimation of intestinal metabolism of highly permeable drugs absorbed across the top portion of the villous surface only; (2) first-pass extraction of poorly permeable drugs occurs primarily in enterocytes, drugs with higher permeability are extracted by enterocytes and hepatocytes; (3) CYP3A distribution along crypt-villous axes does not significantly impact intestinal metabolism; (4) differences in permeability of perpetrator and victim drugs results in their spatial separation along the villous axis and intestinal length, diminishing drug-drug interaction magnitude.

Conclusions

The model provides a useful tool to interrogate intestinal absorption/metabolism of candidate drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AUC :

area under the curve

CL :

clearance

F :

oral bioavailability

F g :

intestinal availability

F h :

hepatic availability

f ub :

free fraction in blood

f ue :

free fraction in enterocyte

f uh :

free fraction in hepatocyte

HLQ :

higher limit of quantitation

ICRP:

the International Commission on Radiological Protection

LC/MS/MS:

high performance liquid chromatography with tandem mass spectrometry

LLQ :

lower limit of quantitation

PBPK:

physiologically-based pharmacokinetics model

P eff :

effective permeability

P-gp:

P-glycoprotein

References

  1. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4:825–33.

    Article  CAS  PubMed  Google Scholar 

  2. Peters SA, Schroeder PE, Giri N, Dolgos H. Evaluation of the use of static and dynamic models to predict drug-drug interaction and its associated variability: impact on drug discovery and early development. Drug Metab Dispos. 2012;40:1495–507.

    Article  CAS  PubMed  Google Scholar 

  3. Einolf HJ. Comparison of different approaches to predict metabolic drug-drug interactions. Xenobiotica. 2007;37:1257–94.

    CAS  PubMed  Google Scholar 

  4. Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther. 1997;283:1552–62.

    CAS  PubMed  Google Scholar 

  5. Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76:391.

    Article  CAS  PubMed  Google Scholar 

  6. Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60:14–24.

    Article  CAS  PubMed  Google Scholar 

  7. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab. 2007;8:676–84.

    Article  CAS  PubMed  Google Scholar 

  8. Cong D, Doherty M, Pang KS. A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos. 2000;28:224–35.

    CAS  PubMed  Google Scholar 

  9. Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39:1633–42.

    Article  CAS  PubMed  Google Scholar 

  10. Tam D, Tirona RG, Pang KS. Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab Dispos. 2003;31:373–83.

    Article  CAS  PubMed  Google Scholar 

  11. Lennernas H. Human intestinal permeability. J Pharm Sci. 1998;87:403–10.

    Article  CAS  PubMed  Google Scholar 

  12. Pappenheimer JR, Michel CC. Role of villus microcirculation in intestinal absorption of glucose: coupling of epithelial with endothelial transport. J Physiol. 2003;553:561–74.

    Article  CAS  PubMed  Google Scholar 

  13. Oliver RE, Jones AF, Rowland M. What surface of the intestinal epithelium is effectively available to permeating drugs? J Pharm Sci. 1998;87:634–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica. 2011;41:623–38.

    Article  CAS  PubMed  Google Scholar 

  15. Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59:491–502.

    Article  CAS  PubMed  Google Scholar 

  16. DeSesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol. 2001;39:209–28.

    Article  CAS  PubMed  Google Scholar 

  17. Krogh A. The progress of physiology. Science. 1929;70:200–4.

    Article  CAS  PubMed  Google Scholar 

  18. Casley-Smith JR, O’Donoghue PJ, Crocker KW. The quantitative relationships between fenestrae in jejunal capillaries and connective tissue channels: proof of “tunnel-capillaries”. Microvasc Res. 1975;9:78–100.

    Article  CAS  PubMed  Google Scholar 

  19. Buddington RK, Diamond JM. Ontogenetic development of intestinal nutrient transporters. Annu Rev Physiol. 1989;51:601–19.

    Article  CAS  PubMed  Google Scholar 

  20. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72:441–55.

    Article  CAS  PubMed  Google Scholar 

  21. Keppler D, Arias IM. Hepatic canalicular membrane. Introduction: transport across the hepatocyte canalicular membrane. FASEB J. 1997;11:15–8.

    CAS  PubMed  Google Scholar 

  22. Strocchi A, Levitt MD. Role of villous surface area in absorption. Science versus religion. Dig Dis Sci. 1993;38:385–7.

    Article  CAS  PubMed  Google Scholar 

  23. Backman JT, Kivisto KT, Olkkola KT, Neuvonen PJ. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol. 1998;54:53–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kupferschmidt HH, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995;58:20–8.

    Article  CAS  PubMed  Google Scholar 

  25. Palkama VJ, Ahonen J, Neuvonen PJ, Olkkola KT. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther. 1999;66:33–9.

    Article  CAS  PubMed  Google Scholar 

  26. Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ, Olkkola KT. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther. 2006;79:362–70.

    Article  CAS  PubMed  Google Scholar 

  27. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38:1147–58.

    Article  CAS  PubMed  Google Scholar 

  28. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in Vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27:1350–9.

    CAS  PubMed  Google Scholar 

  29. Fisher JM, Wrighton SA, Watkins PB, Schmiedlin-Ren P, Calamia JC, Shen DD, et al. First-pass midazolam metabolism catalyzed by 1alpha,25-dihydroxy vitamin D3-modified Caco-2 cell monolayers. J Pharmacol Exp Ther. 1999;289:1134–42.

    CAS  PubMed  Google Scholar 

  30. Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20:757–64.

    Article  CAS  PubMed  Google Scholar 

  31. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001;299:620–8.

    CAS  PubMed  Google Scholar 

  32. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283:46–58.

    CAS  PubMed  Google Scholar 

  33. Chen EP, Chen L, Ji Y, Tai G, Wen YH, Ellens H. A mechanism-based mathematical model of aryl hydrocarbon receptor-mediated CYP1A induction in rats using beta-naphthoflavone as a tool compound. Drug Metab Dispos. 2010;38:2278–85.

    Article  CAS  PubMed  Google Scholar 

  34. Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol. 2012;83:279–85.

    Article  CAS  PubMed  Google Scholar 

  35. Fan J, Maeng HJ, Pang KS. Interplay of transporters and enzymes in the Caco-2 cell monolayer: I. effect of altered apical secretion. Biopharm Drug Dispos. 2010;31:215–27.

    Article  CAS  PubMed  Google Scholar 

  36. Kalvass JC, Pollack GM. Kinetic considerations for the quantitative assessment of efflux activity and inhibition: implications for understanding and predicting the effects of efflux inhibition. Pharm Res. 2007;24:265–76.

    Article  CAS  PubMed  Google Scholar 

  37. Lumen AA, Acharya P, Polli JW, Ayrton A, Ellens H, Bentz J. If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos. 2010;38:260–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tachibana T, Kato M, Takano J, Sugiyama Y. Predicting drug-drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein. Curr Drug Metab. 2010;11:762–77.

    Article  CAS  PubMed  Google Scholar 

  39. Tran TT, Mittal A, Aldinger T, Polli JW, Ayrton A, Ellens H, et al. The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys J. 2005;88:715–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fihn BM, Sjoqvist A, Jodal M. Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology. 2000;119:1029–36.

    Article  CAS  PubMed  Google Scholar 

  41. Meddings JB, DeSouza D, Goel M, Thiesen S. Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit. J Clin Invest. 1990;85:1099–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Meyers MB, Scotto KW, Sirotnak FM. P-glycoprotein content and mediation of vincristine efflux: correlation with the level of differentiation in luminal epithelium of mouse small intestine. Cancer Commun. 1991;3:159–65.

    CAS  PubMed  Google Scholar 

  43. Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19(3):359–76.

    Article  CAS  PubMed  Google Scholar 

  44. Chaudhuri TK. Use of 99mTc-DTPA for measuring gastric emptying time. J Nucl Med. 1974;15(6):1–5.

    Google Scholar 

  45. Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci. 2010;99(1):486–514.

    Article  CAS  PubMed  Google Scholar 

  46. Brown RP, Delp MD, Rhomberg SL, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    Article  CAS  PubMed  Google Scholar 

  47. van Richter O, Burk O, Fromm MF, Thon KP, Eichelbaum M, Kivisto KT. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue. Clin Pharmacol Ther. 2004;75(3):172–83.

    Article  Google Scholar 

  48. Tabbaa MG, Axon ATR, Dixon MF. Enterocyte dimensions in patients with abnormal intestinal permeability. Eur J Gastroenterol Hepatol. 1994;6:607–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile P. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, E.P., Tai, G. & Ellens, H. The Importance of Villous Physiology and Morphology in Mechanistic Physiologically-Based Pharmacokinetic Models. Pharm Res 31, 305–321 (2014). https://doi.org/10.1007/s11095-013-1161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1161-x

Key words

Navigation