Skip to main content

Advertisement

Log in

Thermosensitive mPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles: Effect of Hydrophilic Chain Length and Camptothecin Release Behavior

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity.

Methods

The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV–vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays.

Results

The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96–27.64 mg L−1. The micelles were narrow-size-distribution, with hydrodynamic diameters about 128–193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior.

Conclusions

The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sanada Y, Akiba I, Sakurai K, Shiraishi K, Yokoyama M, Mylonas E, et al. Hydrophobic molecules infiltrating into the poly(ethylene glycol) domain of the core/shell interface of a polymeric micelle: evidence obtained with anomalous small-angle X-ray scattering. J Am Chem Soc. 2013;135(7):2574–82.

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Long C, Xie C, Chen X, Zhang L, Chu B, et al. Two novel nanoscale preparations of micelle and thermosensitive hydrogel for docetaxel to treat malignant tumor. J Biomed Nanotechnol. 2013;9(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  3. Peng J, Qi T, Liao J, Fan M, Luo F, Li H, et al. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Nanoscale. 2012;4(8):2694–704.

    Article  CAS  PubMed  Google Scholar 

  4. Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, et al. Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Rel. 2006;112:329–32.

    Article  CAS  Google Scholar 

  5. Kim DJ, Heo JY, Kim KS, Choi IS. Formation of thermoresponsive poly (N-iso propylacrylamide)/dextran particles by atom transferradical polymerization. Macromol Rapid Commun. 2003;24:517–21.

    Article  Google Scholar 

  6. Gil ES, Hudson SM. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–222.

    Article  CAS  Google Scholar 

  7. Alarcon CH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev. 2005;34:276–85.

    Google Scholar 

  8. Rezaei SJT, Nabid MR, Niknejad H, Entezami AA. Multifunctional and thermo-responsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer. 2012;53:3485–97.

    Article  Google Scholar 

  9. Opanasopit P, Yokoyama M, Watanabe W, Kawano K, Maitani Y, Okano T. Influence of serum and albumins from different species on stability of camptothecin-loaded micelles. J Control Release. 2005;104:313–21.

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Del. 2010;7:49–62.

    Article  CAS  Google Scholar 

  11. Rapoport N. Physical stimuli-respons ive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90.

    Article  CAS  Google Scholar 

  12. Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Cur Opin Colloid Interface Sci. 2011;16:182–94.

    Article  Google Scholar 

  13. Konovalov MA, Kramarenko EY, Khokhlov AR, Reineker P. Conformational behavior of diblock comb copolymers. J Chem Phys. 2009;130:164903–9.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Mountrichas G, Zhang G, Pispas S. Thermoresponsive core–shell brush copolymers with poly(propylene oxide)-block-poly(ethylene oxide) side chains via a ‘grafting from’ technique. Macromolecules. 2010;43(4):1771–7.

    Article  CAS  Google Scholar 

  15. Li X, Kong X, Zhang J, Wang Y, Wang Y, Shi S, et al. A novel composite hydrogel based on chitosan and inorganic phosphate for local drug delivery of camptothecin nanocolloids. J Pharm Sci. 2011;100(1):232–41.

    Article  CAS  PubMed  Google Scholar 

  16. Tang DL, Song F, Chen C, Wang XL, Wang YZ. A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery. Nanotechnology. 2013;24(14):145101–10.

    Article  PubMed  Google Scholar 

  17. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Luo YL, Wei Y, Xu F, Zhang LL. Novel thermo-responsive self-assembly micelles from a double brush-shaped PNIPAM-g-(PA-b-PEG-b-PA)-g-PNIPAM copolymer via an atom transfer radical polymerization route. J Polym Sci, Part A: Polym Chem. 2012;50(10):2053–67.

    Article  CAS  Google Scholar 

  19. Wei H, Zhang XZ, Cheng C, Cheng SX, Zhuo RX. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials. 2007;28:99–107.

    Article  CAS  PubMed  Google Scholar 

  20. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Del Rev. 2011;63:1228–46.

    Article  CAS  Google Scholar 

  21. Chang YC, Chu IM. Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Polym J. 2008;44:3922–30.

    Article  CAS  Google Scholar 

  22. Mendez S, Curro JG, McCoy JD, Lopez GP. Computational modeling of the temperature-induced structural changes of tethered poly(N-isopropylacrylamide) with self-consistent field theory. Macromolecules. 2005;38:174–81.

    Article  CAS  Google Scholar 

  23. Halperin A. Compression induced phase transitions in PEO brushes: the n-cluster. Model Eur Phys J B. 1998;3:359–64.

    Article  Google Scholar 

  24. Plunkett KN, Zhu X, Moore JS, Leckband DE. PNIPAM Chain collapse depends on the molecular weight and grafting density. Langmuir. 2006;22(9):4259–66.

    Article  CAS  PubMed  Google Scholar 

  25. Dreher MR, Simnick AJ, Fischer K, Smith RJ, Patel A, Schmidt M, et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J Am Chem Soc. 2008;130(2):687–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cai Q, Zhang L, Yang J, Jin R. Core-crosslinked poly(N-isopropyl -acrylamide-co-N, N-dimethylacrylamide)-b-poly(ε-caprolactone) micelles for paclitaxel thermo-sensitive controlled release behaviors. J Clin Rehabilitative Tissue Eng Res. 2010;14(29):5505–10.

    CAS  Google Scholar 

  27. Lee SC, Chang JY. Thermosensitive block copolymers consisting of poly(N-isopropylacrylamide) and star shape oligo(ethylene oxide). Bull Korean Chem Soc. 2009;30(7):1521–5.

    Article  CAS  Google Scholar 

  28. Greenwood R, Kendall K. Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceramic Soc. 1999;19:479–88.

    Article  CAS  Google Scholar 

  29. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceramic Soc. 2012;32:235–324.

    Article  CAS  Google Scholar 

  30. Gu JC, Qiao MX, Gao W, Zhao XL, Hu HY, Xu J, et al. Preparation of adriamycin-loaded temperature/pH sensitive self-assembly block copolymer micelles. Acta Pharm Sin. 2009;44:793–7.

    CAS  Google Scholar 

  31. Tauer K, Gau D, Schulze S, Völkel A, Dimova R. Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers. Colloid Polym Sci. 2009;287:299–312.

    Article  CAS  Google Scholar 

  32. Luo Y, Li L, Wang Y, Chan G, Hou Z, Zhang Q. Preparation and characteristic of hydroxycamptothecin-loaded PLA nanoparticles using dialysis method. J Xiamen University Nat Sci. 2010;49(6):832–7.

    CAS  Google Scholar 

  33. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74:193–201.

    Article  CAS  PubMed  Google Scholar 

  34. Yao R, Liu L, Deng S, Ren W. Preparation of carboxymethylchitosan nanoparticles with acid-sensitive bond based on solid dispersion of 10-hydroxycamptothecin. ISRN Pharm. 2011;2011:1–9. doi:10.5402/2011/624704.

    Google Scholar 

  35. Hevus I, Modgil A, Daniels J, Kohut A, Sun C, Stafslien S, et al. Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs. Biomacromolecules. 2012;13:2537–45.

    Article  CAS  PubMed  Google Scholar 

  36. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–18.

    Article  CAS  PubMed  Google Scholar 

  37. Jaskari T, Vuorio M, Kontturi K, Manzanares JA, Hirvonen J. Iion-exchange fibers and drugs: an equilibrium study. J Control Release. 2001;70:219–29.

    Article  CAS  PubMed  Google Scholar 

  38. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  CAS  PubMed  Google Scholar 

  39. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21:2001–8.

    Article  CAS  PubMed  Google Scholar 

  40. Huang XJ, Xiao Y, Lang MD. Self-assembly of pH-sensitive mixed micelles based on linear and star copolymers for drug delivery. J Colloid Interface Sci. 2011;364:92–9.

    Article  CAS  PubMed  Google Scholar 

  41. Luo YL, Wang SH, Li ZQ. Characterization, microstructure, and gas sensitive response behavior of PEG/lithium salt polymer electrolyte films. J Mater Sci. 2008;43:174–84.

    Article  CAS  Google Scholar 

  42. Yahara T, Koga T, Yoshida S, Deguchi T, Shirouzu K. Relationship between microvessel density and thermographic hot areas in breast cancer. Surg Today. 2003;33:243–8.

    Article  PubMed  Google Scholar 

  43. Akimoto J, Nakayama M, Sakai K, Okano T. Temperature-induced intracellular uptake of thermoresponsive polymeric micelles. Biomacromolecules. 2009;10:1331–6.

    Article  CAS  PubMed  Google Scholar 

  44. Akimoto J, Nakayama M, Sakai K, Okano T. Thermally controlled intracellular uptake system of polymeric micelles possessing poly(N-isopropylacrylamide) -based outer coronas. Mol Pharm. 2010;7:926–35.

    Article  CAS  PubMed  Google Scholar 

  45. Huang P, Zhou J. The enhancement of hypeffhermia study on patient with tumor. Modern Oncology. 2010;18(7):1460–2.

    Google Scholar 

  46. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in form of slabs, sphere, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  47. Martins SM, Wendling T, Goncalves VMF, Sarmentoa B, Ferreira DC. Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles. J Chromatography B. 2012;880:100–7.

    Article  CAS  Google Scholar 

  48. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet. 2003;42:1089–105.

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des. 2006;12(36):4685–701.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work is supported by the Natural Science Foundation of China (grant NSFC 21273142), Natural Science Foundation of Shaanxi Province (2012JM6009), and Graduate Education Innovation Funds (2013CXS049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ling Luo or Feng Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XL., Luo, YL., Xu, F. et al. Thermosensitive mPEG-b-PA-g-PNIPAM Comb Block Copolymer Micelles: Effect of Hydrophilic Chain Length and Camptothecin Release Behavior. Pharm Res 31, 291–304 (2014). https://doi.org/10.1007/s11095-013-1160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1160-y

KEY WORDS

Navigation