Skip to main content
Log in

Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate, for the first time, the performance of a dry powder inhaler (DPI, Aerolizer®) in the case of a model drug (i.e. albuterol sulphate) formulated with spray dried mannitol carrier particles with homogeneous shape and solid–state form but different sizes.

Methods

Spray dried mannitol (SDM) particles were characterized in terms of size, surface area, morphology, water content, solid–state, density and electrostatic charge by a novel approach. DPI formulations composed of SDM and albuterol sulphate (AS) were prepared and evaluated in terms of drug content homogeneity and in vitro aerosolization performance.

Results

All SDM particles generated similar fine particle fractions of AS. Formulations consisting of larger SDM particles demonstrated better drug content homogeneity, reduced amounts of drug loss and reduced oropharyngeal deposition. Comparing different SDM products demonstrated that SDM powders with relatively poorer flowability, wider size distributions and higher charge density generated DPI formulations with poorer drug content homogeneity and deposited higher amount of drug on the inhaler, mouthpiece adaptor and throat. DPI formulation total desirability increased linearly with the mean diameter of SDM.

Conclusion

Particle shape and solid–state form of mannitol could dominate over carrier size, bulk density, flowability and charge in terms of determining the aerosolization behaviour of AS formulated with mannitol carrier, at least within the experimental protocols applied in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Saint-Lorant G, Leterme P, Gayot A, Flament MP. Influence of carrier on the performance of dry powder inhalers. Int J Pharm. 2007;334(1–2):85–91.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  3. Le VNP, Thi THH, Robins E, Flament M. Dry Powder Inhalers: Study of the Parameters Influencing Adhesion and Dispersion of Fluticasone Propionate. AAPS Pharm Sci Tech. 2012a:1–8.

  4. Hassan MS, Lau R. Inhalation performance of pollen-shape carrier in dry powder formulation: effect of size and surface morphology. Int J Pharm. 2011;413:93–102.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng XM, Martin GP, Marriott C. Particulate interactions in dry powder formulations for inhalation. Informa Health Care; 2001.

  6. Traini D, Young PM, Thielmann F, Acharya M. The Influence of Lactose Pseudopolymorphic Form on Salbutamol Sulfate-Lactose Interactions in DPI Formulations. Drug Dev Ind Pharm. 2008;34(9):992–1001.

    Article  CAS  PubMed  Google Scholar 

  7. Byron PR, Jashnam R. Efficiency of aerosolization from dry powder blends of terbutaline sulfate and lactose NF with different particle-size distributions. Pharm Res. 1990;7:881.

    Google Scholar 

  8. Donovan MJ, Kim SH, Raman V, Smyth HD. Dry powder inhaler device influence on carrier particle performance. J Pharm Sci. 2012;101:1107.

    Google Scholar 

  9. Tee SK, Marriott C, Zeng XM, Martin GP. The use of different sugars as fine and coarse carriers for aerosolised salbutamol sulphate. Int J Pharm. 2000;208(1–2):111–23.

    Article  CAS  PubMed  Google Scholar 

  10. Shur J, Harris H, Jones MD, Kaerger JS, Price R. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations. Pharm Res. 2008;25(7):1631–40.

    Article  CAS  PubMed  Google Scholar 

  11. Cline D, Dalby R. Predicting the quality of powders for inhalation from surface energy and area. Pharm Res. 2002;19(9):1274–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sethuraman VV, Hickey AJ. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. AAPS PharmSciTech. 2002;3(4):7–16.

    Article  PubMed Central  Google Scholar 

  13. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  14. Kaialy W, Larhrib H, Ticehurst MD, Nokhodchi A. Influence of batch cooling crystallization on mannitol physical properties and drug dispersion from dry powder inhalers. Cryst growth Des. 2012;12:3006–17.

    Article  CAS  Google Scholar 

  15. Saleem I, Smyth H, Telko M. Prediction of dry powder inhaler formulation performance from surface energetics and blending dynamics. Drug Dev Ind Pharm. 2008;34(9):1002–10.

    Article  CAS  PubMed  Google Scholar 

  16. Kumon M, Machida S, Suzuki M, Kusai A, Yonemochi E, Terada K. Application and mechanism of inhalation profile improvement of DPI formulations by mechanofusion with magnesium stearate. Chem Pharm Bull. 2008;56(5):617–25.

    Article  CAS  PubMed  Google Scholar 

  17. Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A. Effect of carrier particle shape on dry powder inhaler performance. Int J Pharm. 2011;421:23.

    Google Scholar 

  18. Narayan P, Hancock B. The influence of particle size on the surface roughness of pharmaceutical excipient compacts. Mater Sci Eng, A. 2005;407(1):226–33.

    Article  Google Scholar 

  19. Hüttenrauch R. Modification of starting materials to improve tabletting properties. Pharm Ind. 1983;45(4):435–40.

    Google Scholar 

  20. Van Campen L, Amidon G, Zografi G. Moisture sorption kinetics for water–soluble substances I: Theoretical considerations of heat transport control. J Pharm Sci. 1983;72(12):1381–8.

    Article  PubMed  Google Scholar 

  21. Zhu K, Tan RBH, Chen F, Ong KH, Heng PWS. Influence of particle wall adhesion on particle electrification in mixers. Int J Pharm. 2007;328(1):22–34.

    Article  CAS  PubMed  Google Scholar 

  22. Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E, Nokhodchi A. The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Colloid Surface B. 2012;89:29–39.

    Article  CAS  Google Scholar 

  23. Kaialy W, Momin MN, Ticehurst MD, Murphy J, Nokhodchi A. Engineered Mannitol as an alternative carrier to enhance deep lung penetration of salbutamol sulphate from dry powder inhaler. Colloid Surface B. 2010;79:345–56.

    Article  CAS  Google Scholar 

  24. Kaialy W, Larhrib H, Martin GP, Nokhodchi A. The effect of engineered mannitol-lactose mixture on dry powder inhaler performance. Pharm Res. 2012;29:2139–56.

    Article  CAS  PubMed  Google Scholar 

  25. Mora CF, Kwan AKH. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem Concr Res. 2000;30(3):351–8.

    Article  CAS  Google Scholar 

  26. Kaialy W, Nokhodchi A. Freeze-Dried Mannitol for Superior Pulmonary Drug Delivery via Dry Powder Inhaler. Pharm Res. 2012:1–20.

  27. Kaialy W, Martin GP, Ticehurst MD, Royall P, Mohammad MA, Murphy J, et al. Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers. AAPS J. 2011;13:30–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hussain T, Kaialy W, Deng T, Bradley MSA, Nokhodchi A, Armour-Chélu D. A novel sensing technique for measurement of magnitude and polarity of electrostatic charge distribution across individual particles. Int J Pharm. 2012;441:781–9.

    Article  PubMed  Google Scholar 

  29. Kaialy W, Ticehurst MD, Nokhodchi A. Dry powder Inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Int J Pharm. 2012;423:184–94.

    Article  CAS  PubMed  Google Scholar 

  30. Karner S, Urbanetz NA. Triboelectric characteristics of mannitol based formulations for the application in Dry Powder Inhalers. Powder Technol. 2012;235:349–58.

    Article  Google Scholar 

  31. Rowe RC, Sheskey PJ, Marian EQ. Handbook of pharmaceutical excipients. 2009: 424.

  32. Das S, Larson I, Young P, Stewart P. Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH. Eur J Pharm Sci. 2009;38(4):347–54.

    Article  CAS  PubMed  Google Scholar 

  33. Littringer EM, Noisternig MF, Mescher A, Schroettner H, Walzel P, Griesser UJ, Urbanetz. NA. The morphology and various densities of spray dried mannitol. Pow Technol. 2013;246:193–200.

  34. Larhrib H, Cespi M, Dyas M, Roberts M, Ford J. Engineered carrier with a long time of flight (TOF) to improve drug delivery from dry powder inhalation aerosols. Drug Delivery to the Lung (DDL). 2006;17:304–7.

    Google Scholar 

  35. Adi H, Kwok PCL, Crapper J, Young PM, Traini D, Chan HK. Does electrostatic charge affect powder aerosolisation? J Pharm Sci. 2010;99(5):2455–61.

    CAS  PubMed  Google Scholar 

  36. Staniforth JN. Performance-modifying influences in dry powder inhalation systems. Aerosol science and technol. 1995;22(4):346–53.

    Article  CAS  Google Scholar 

  37. Pu Y, Mazumder M, Cooney C. Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J Pharm Sci. 2009;98(7):2412–21.

    Article  CAS  PubMed  Google Scholar 

  38. Ho R, Wilson DA, Heng JYY. Crystal habits and the variation in surface energy heterogeneity. Cryst Growth Des. 2009;9(11):4907–11.

    Article  CAS  Google Scholar 

  39. Schiavone H, Palakodaty S, Clark A, York P, Tzannis ST. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Int J Pharm. 2004;281(1–2):55–66.

    Article  CAS  PubMed  Google Scholar 

  40. Heng D, Lee SH, Ng WK, Chan H-K, Kwek JW. Novel alternatives to reduce powder retention in the dry powderinhaler during aerosolization. Int J Pharm. 2013;452:194–200.

    Google Scholar 

  41. Shrimpton J. The challenge of predicting particle dynamics in dry powder inhalers.Proceedings of Drug Delivery to the Lungs 16, The Aerosol Society, London, UK, 2005, pp. 84–88.

  42. Kaialy W, Ticehurst MD, Murphy J, Nokhodchi A. Improved aerosolization performance of salbutamol sulfate formulated with lactose crystallized from binary mixtures of ethanol—acetone. J Pharm Sci. 2011;100:2665–84.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Dr. I.J. Slipper (University of Greenwich) for help provided with SEM analyses. Waseem Kaialy and Ali Nokhodchi thank Dr. D. Tong (University of Greenwich) for access to powder charge analyses, as well as Dr. M. Maniruzzaman and Dr. D. Douroumis (University of Greenwich) for access to BET surface area analyses. Merck KGaA (Germany) is acknowledged for providing delta mannitol (Parteck® Delta M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Kaialy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaialy, W., Hussain, T., Alhalaweh, A. et al. Towards a More Desirable Dry Powder Inhaler Formulation: Large Spray-Dried Mannitol Microspheres Outperform Small Microspheres. Pharm Res 31, 60–76 (2014). https://doi.org/10.1007/s11095-013-1132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1132-2

KEY WORDS

Navigation