Skip to main content
Log in

In Vitro Assessment of NSAIDs-Membrane Interactions: Significance for Pharmacological Actions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and membrane mimetic models.

Methods

The interactions of indomethacin and nimesulide with liposomes of dipalmitoylphosphatidylcholine (DPPC) at two physiological pH conditions (pH 7.4 and 5.0) were investigated by time-resolved and steady-state fluorescence techniques and derivative ultraviolet/visible absorption spectrophotometry. Fluorescence quenching studies that assess the location of the drugs interacting with the membrane were carried out using labeled liposomes with trimethylammonium-diphenylhexatriene (TMA-DPH), a fluorescent probe with well-known membrane localization. Partition of the drugs within membranes was determined by calculating their partition coefficients (K p ) between liposomes and water using derivative ultraviolet/visible absorption spectrophotometry in a temperature range of 37–50°C. The Van’t Hoff analysis of the temperature dependence of K p values allowed calculating the membrane-water variation of enthalpy (ΔH w→m) and entropy (ΔS w→m) and consequently the Gibbs free energy (ΔG w→m).

Results

Results indicate that quenching, partitioning and thermodynamic parameters inherent to the interaction of the studied drugs with the membrane mimetic model are deeply dependent on the initial organization of the membrane, on the pH medium and on the physical properties of the drug.

Conclusions

The interactions between NSAIDs and membranes are manifested as changes in the physical and thermodynamic properties of the bilayers. Depending on the composition and physical state of the membrane and the chemical structure of the NSAID, the interaction can support or prevent drug activity or toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lucio M, Lima JLFC, Reis S. Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem. 2010;17(17):1795–809.

    Article  PubMed  CAS  Google Scholar 

  2. Escriba PV. Membrane-lipid therapy: a new approach in molecular medicine. Trends Mol Med. 2006;12(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  3. Seydel JK, Wiese M. Drug-membrane interactions: Analysis, drug distribution, modeling, Wiley-VCH, 2002.

  4. Weissig V. Liposomes methods and protocols. London: Humana Press; 2010.

    Google Scholar 

  5. Lichtenberger LM, Zhou Y, Dial EJ, Raphael RM. NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. J Pharm Pharmacol. 2006;58(11):1421–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lucio M, Ferreira H, Lima JLFC, Matos C, de Castro B, Reis S. Influence of some anti-inflammatory drugs in membrane fluidity studied by fluorescence anisotropy measurements. Phys Chem Chem Phys. 2004;6(7):1493–8.

    Article  CAS  Google Scholar 

  7. Lucio M, Nunes C, Gaspar D, Golebska K, Wisniewski M, Lima JLFC, et al. Effect of anti-inflammatory drugs in phosphatidylcholine membranes: a fluorescence and calorimetric study. Chem Phys Lett. 2009;471(4–6):300–9.

    Article  CAS  Google Scholar 

  8. van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–15.

    Article  PubMed  Google Scholar 

  9. Lichtenberger LM. Where is the evidence that cyclooxygenase inhibition is the primary cause of nonsteroidal anti-inflammatory drug (NSAID)-induced gastrointestinal injury? Topical injury revisited. Biochem Pharmacol. 2001;61(6):631–7.

    Article  PubMed  CAS  Google Scholar 

  10. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.

    Article  PubMed  Google Scholar 

  11. Escriba PV, Gonzalez-Ros JM, Goni FM, Kinnunen PKJ, Vigh L, Sanchez-Magraner L, et al. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med. 2008;12(3):829–75.

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko T, Matsui H, Shimokawa O, Nakahara A, Hyodo I. Cellular membrane fluidity measurement by fluorescence polarization in indomethacin-induced gastric cellular injury in vitro. J Gastroenterol. 2007;42(12):939–46.

    Article  PubMed  CAS  Google Scholar 

  13. Lichtenberger LM, Zhou Y, Jayaraman V, Doyen JR, O’Neil RG, Dial EJ, et al. Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: Characterization of interaction of NSAIDs with phosphatidylcholine. Biochim Biophys Acta-Mol Cell Biol Lipids. 2012;1821(7):994–1002.

    Article  CAS  Google Scholar 

  14. Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nat Med. 1995;1(2):154–8.

    Article  PubMed  CAS  Google Scholar 

  15. Lichtenberger LM, Graziani LA, Dial EJ, Butler BD, Hills BA. Role of surface-active phospholipids in gastric cytoprotection. Science. 1983;219(4590):1327–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lichtenberger LM. The hydrophobic barrier properties of gastrointestinal mucus. Annu Rev Physiol. 1995;57:565–83.

    Article  PubMed  CAS  Google Scholar 

  17. Brzozowski T. Nonsteroidal anti-inflammatory drug-induced experimental gastropathy: is gastric acid the major trigger? Clin Exp Pharmacol Physiol. 2010;37(7):651–3.

    Article  PubMed  CAS  Google Scholar 

  18. da Silva AMG, Romao RIS. Mixed monolayers involving DPPC, DODAB and oleic acid and their interaction with nicotinic acid at the air-water interface. Chem Phys Lipids. 2005;137(1–2):62–76.

    Article  Google Scholar 

  19. Allen A, Pearson JP. The gastrointestinal adherent mucous gel barrier. In: Corfield AP, editor. Glycoprotein methods and protocols - The Mucins, Vol. 125. Totowa: Humana Press; 2000. p. 57–64.

    Chapter  Google Scholar 

  20. Mosnier P, Rayssiguier Y, Motta C, Pelissier E, Bommelaer G. Effect of ethanol on rat gastric surfactant: a fluorescence polarization study. Gastroenterology. 1993;104(1):179–84.

    PubMed  CAS  Google Scholar 

  21. Jordan O, Butoescu N, Doelker E. Intra-articular drug delivery systems for the treatment of rheumatic diseases: a review of the factors influencing their performance. Eur J Pharm Biopharm. 2009;73(2):205–18.

    Article  PubMed  Google Scholar 

  22. Ferreira H, Lúcio M, Lima JLFC, Cordeiro-da-Silva A, Tavares J, Reis S. Effect of anti-inflammatory drugs on splenocyte membrane fluidity. Anal Biochem. 2005;339(1):144–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gaspar D, Lucio M, Wagner K, Brezesinski G, Rocha S, Lima JLFC, et al. A biophysical approach to phospholipase A(2) activity and inhibition by anti-inflammatory drugs. Biophys Chem. 2010;152(1–3):109–17.

    Article  PubMed  CAS  Google Scholar 

  24. Sousa C, Nunes C, Lucio M, Ferreira H, Lima JLFC, Tavares J, et al. Effect of nonsteroidal anti-inflammatory drugs on the cellular membrane fluidity. J Pharm Sci. 2008;97(8):3195–206.

    Article  PubMed  CAS  Google Scholar 

  25. Nunes C, Brezesinski G, Pereira-Leite C, Lima JLFC, Reis S, Lucio M. NSAIDs interactions with membranes: a biophysical approach. Langmuir. 2011;27(17):10847–58.

    Article  PubMed  CAS  Google Scholar 

  26. Pereira-Leite C, Nunes C, Lima JLFC, Reis S, Lucio M. Interaction of celecoxib with membranes: the role of membrane biophysics on its therapeutic and toxic effects. J Phys Chem B. 2012;116(46):13608–17.

    Article  PubMed  CAS  Google Scholar 

  27. Nunes C, Brezesinski G, Lima JLFC, Reis S, Lucio M. Synchrotron SAXS and WAXS study of the interactions of NSAIDs with lipid membranes. J Phys Chem B. 2011;115(24):8024–32.

    Article  PubMed  CAS  Google Scholar 

  28. Nunes C, Brezesinski G, Lopes D, Lima JLFC, Reis S, Lucio M. Lipid-drug interaction: biophysical effects of tolmetin on membrane mimetic systems of different dimensionality. J Phys Chem B. 2011;115(43):12615–23.

    Article  PubMed  CAS  Google Scholar 

  29. Panicker L, Mishra KP. Influence of salicylic acid on the biophysical properties of dipalmitoyl phosphatidylcholine vesicles. Phase Transit. 2008;81(1):65–76.

    Article  CAS  Google Scholar 

  30. Balimane PV, Chong SH, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. J Pharm Toxicol Methods. 2000;44(1):301–12.

    Article  CAS  Google Scholar 

  31. Ho C, Slater SJ, Stubbs CD. Hydration and order in lipid bilayers. Biochemistry-Us. 1995;34(18):6188–95.

    Article  CAS  Google Scholar 

  32. Lasic DD, Needham D. The “stealth” liposome: a prototypical biomaterial. Chem Rev. 1995;95:2601–28.

    Article  CAS  Google Scholar 

  33. Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to mantain a membrane potential. Biochim Biophys Acta. 1985;812:55–65.

    Article  PubMed  CAS  Google Scholar 

  34. Savitzky A, Golay MJE. Smoothing and differentiation of data. Anal Chem. 1964;36:1627–39.

    Article  CAS  Google Scholar 

  35. Magalhaes LM, Nunes C, Lucio M, Segundo MA, Reis S, Lima JLFC. High-throughput microplate assay for the determination of drug partition coefficients. Nat Protoc. 2010;5(11):1823–30.

    Article  PubMed  CAS  Google Scholar 

  36. Coutinho A, Prieto M. Ribonuclease T1 and alcohol dehydrogenase fluorescence quenching by acrylamide. J Chem Educ. 1993;70:425.

    Article  CAS  Google Scholar 

  37. Amin K, Wasan KM, Albrecht RM, Heath TD. Cell association of liposomes with high fluid anionic phospholipid content is mediated specifically by LDL and its receptor, LDLr. J Pharm Sci. 2002;91(5):1233–44.

    Article  PubMed  CAS  Google Scholar 

  38. Koynova R, Koumanov A, Tenchov B. Metastable rippled gel phase in saturated phosphatidylcholines: calorimetric and densitometric characterization. Bba-Biomembr. 1996;1285(1):101–8.

    Article  Google Scholar 

  39. Chakraborty H, Roy S, Sarkar M. Interaction of oxicam NSAIDs with DMPC vesicles: differential partitioning of drugs. Chem Phys Lipids. 2005;138(1–2):20–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kundu S, Chakraborty H, Sarkar M, Datta A. Interaction of Oxicam NSAIDs with lipid monolayer: anomalous dependence on drug concentration. Colloid Surface B. 2009;70(1):157–61.

    Article  CAS  Google Scholar 

  41. Lozano HR, Martínez F. Thermodynamics of partitioning and solvation of ketoprofen in some organic solvent/buffer and liposome systems. Braz J Pharm Sci. 2006;42(4):601–13.

    CAS  Google Scholar 

  42. Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2006.

    Book  Google Scholar 

  43. Illinger D, Duportail G, Mely Y, Poirelmorales N, Gerard D, Kuhry JG. A comparison of the fluorescence properties of Tma-Dph as a probe for plasma-membrane and for endocytic membrane. Bba-Biomembr. 1995;1239(1):58–66.

    Article  Google Scholar 

  44. Kovacs E, Savopol T, Iordache MM, Saplacan L, Sobaru I, Istrate C, et al. Interaction of gentamicin polycation with model and cell membranes. Bioelectrochemistry. 2012;87:230–5.

    Article  PubMed  CAS  Google Scholar 

  45. Monteiro JP, Martins AF, Lucio M, Reis S, Pinheiro TJT, Geraldes CFGC, et al. Nimesulide interaction with membrane model systems: are membrane physical effects involved in nimesulide mitochondrial toxicity? Toxicol Vitr. 2011;25(6):1215–23.

    Article  CAS  Google Scholar 

  46. Monteiro JP, Martins AF, Lucio M, Reis S, Geraldes CFGC, Oliveira PJ, et al. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling. J Bioenerg Biomembr. 2011;43(3):287–98.

    Article  PubMed  CAS  Google Scholar 

  47. Brittes J, Lucio M, Nunes C, Lima JLFC, Reis S. Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects. Chem Phys Lipids. 2010;163(8):747–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Cláudia Nunes and Marina Pinheiro thank FCT (Fundação para a Ciência e Tecnologia) for the Post-Doc Grant (SFRH/BPD/81963/2011) and Doc Grant (SFRH/BD/63318/2009), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, C., Lopes, D., Pinheiro, M. et al. In Vitro Assessment of NSAIDs-Membrane Interactions: Significance for Pharmacological Actions. Pharm Res 30, 2097–2107 (2013). https://doi.org/10.1007/s11095-013-1066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1066-8

Key words

Navigation