Skip to main content

Advertisement

Log in

Characterization of Spherulites as a Lipidic Carrier for Low and High Molecular Weight Agents

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop spherulite formulations to achieve high entrapment efficiency for both small and macromolecules as well as cell-type specific delivery.

Methods

Spherulites of various compositions were prepared, and lipid-PEG was incorporated through post-insertion. Calcein and FITC-labeled albumin were employed as model drugs for small and macromolecules. The spherulites were characterized with respect to entrapment efficiency, size, structure, and release kinetics, and the morphology was examined via cryo-EM. Finally, SV119-decorated spherulites were examined for their selective uptake by cancer cells.

Results

The spherulites are 170 ~ 290 nm in size. A loading efficiency of 55 ~ 60% can be consistently achieved for both calcein and albumin under optimized conditions. Cryo-EM shows the onion-like morphology consistent with the structure of multilamellar liposomes. A t1/2 of 39.3 h and 69.7 h in cargo release in serum was observed before and after PEG decoration, and incorporation of SV119 led to selective delivery of rhodamine-labeled spherulites to PC-3 tumor cells.

Conclusions

Our optimized formulations may represent a platform with simple preparation approach, relatively small particle size, high drug loading efficiency for both low and high molecular weight agents, and slow release kinetics for selective delivery of various types of therapeutics to target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BS10:

brij S10

BSA:

bovine serum albumin

CH:

cholesterol

Cryo-EM:

cryo-electron microscopy

Dex:

dexamethasone

DLS:

dynamic light scattering

DMEM:

Dulbecco’s modified eagle’s medium

DPBS:

Dulbecco’s phosphate buffered saline

DSPE-PEG2k :

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

EE:

entrapment efficiency

EPR:

enhanced permeability and retention

FBS:

fetal bovine serum

FITC:

fluorescein isothiocyanate

FITC-BSA-SU:

fluorescein isothiocyanate-labeled succinylated bovine serum album

MeO-PEG5k :

methoxypoly(ethylene glycol)-5000

MLV:

multilamellar vesicles

SPC:

soybean L-α-phosphatidylcholine

TW80:

polyoxyethylene 80 sorbitan monooleate

References

  1. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55.

    Article  PubMed  CAS  Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    PubMed  CAS  Google Scholar 

  3. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  4. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    Article  PubMed  CAS  Google Scholar 

  5. Forrest ML, Yáñez JA, Remsberg CM, Ohgami Y, Kwon GS, Davies NM. Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(e-caprolactone) micelle nanocarriers: pharmacokinetic disposition, tolerability, and cytotoxicity. Pharm Res. 2008;25(1):194–206.

    Article  PubMed  CAS  Google Scholar 

  6. Fonseca MJ, Jagtenberg JC, Haisma HJ, Storm G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody–enzyme conjugate. Pharm Res. 2003;20(3):423–8.

    Article  PubMed  CAS  Google Scholar 

  7. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8(5):660–8.

    Article  PubMed  CAS  Google Scholar 

  8. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305.

    Article  PubMed  CAS  Google Scholar 

  9. Abu Lila AS, Ishida T, Kiwada H. Targeting anticancer drugs to tumor vasculature using cationic liposomes. Pharm Res. 2010;27(7):1171–83.

    Article  PubMed  CAS  Google Scholar 

  10. Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90(6):667–80.

    Article  PubMed  CAS  Google Scholar 

  11. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5.

    Article  PubMed  CAS  Google Scholar 

  12. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  PubMed  CAS  Google Scholar 

  13. Xiang G, Wu J, Lu Y, Liu Z, Lee RJ. Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm. 2008;356(1–2):29–36.

    Article  PubMed  CAS  Google Scholar 

  14. Gantert M, Lewrick F, Adrian JE, Rössler J, Steenpaß T, Schubert R, et al. Receptor-specific targeting with liposomes in vitro based on sterol-PEG1300 anchors. Pharm Res. 2009;26(3):529–38.

    Article  PubMed  CAS  Google Scholar 

  15. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151(2):201–15.

    Article  PubMed  CAS  Google Scholar 

  16. Diat O, Roux D, Nallet F. Effect of shear on a lyotropic lamellar phase. J Phys II France. 1993;3(9):1427–52.

    Article  CAS  Google Scholar 

  17. Diat O, Roux D. Preparation of monodisperse multilayer vesicles of controlled size and high encapsulation ratio. J Phys II France. 1993;3(1):9–14.

    Article  CAS  Google Scholar 

  18. Redkar M, Hassan PA, Aswal V, Devarajan P. Onion phases of PEG-8 distearate. J Pharm Sci. 2007;96(9):2436–45.

    Article  PubMed  CAS  Google Scholar 

  19. Gauffre F, Roux D. Studying a new type of surfactant aggregate (“spherulites”) as chemical microreactors. A first example: copper ion entrapping and particle synthesis. Langmuir. 1999;15(11):3738–47.

    Article  CAS  Google Scholar 

  20. Mignet N, Brun A, Degert C, Delord B, Roux D, Helene C, et al. The spherulitesTM: a promising carrier for oligonucleotide delivery. Nucleic Acids Res. 2000;28(16):3134–42.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Y, Huang Y, Zhang P, Gao X, Gibbs RB, Li S. Incorporation of a selective σ-2 receptor ligand enhances uptake of liposomes by multiple cancer cells. Int J Nanomedicine. 2012;7:4473–85.

    PubMed  CAS  Google Scholar 

  22. Zhang P, Ye H, Min T, Zhang C. Water soluble poly(ethylene glycol) prodrug of silybin: design, synthesis, and characterization. J Appl Polym Sci. 2008;107(5):3230–5.

    Article  CAS  Google Scholar 

  23. Uster PS, Allen TM, Danie BE, Mendez CJ, Newman MS, Zhu GZ. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996;386(2–3):243–6.

    Article  PubMed  CAS  Google Scholar 

  24. Szoka F. Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng. 1980;9:467–508.

    Article  CAS  Google Scholar 

  25. Simard P, Hoarau D, Khalid MN, Roux E, Leroux J-C. Preparation and in vivo evaluation of PEGylated spherulite formulations. Biochim Biophys Acta. 2005;1715(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  26. Sułkowski WW, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. J Mol Struct. 2005;744:737–47.

    Article  Google Scholar 

  27. Demel RA, Kinsky SC, Kinsky CB, van Deesen LLM. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with neutral and synthetic lecithins. Biochim Biophys Acta. 1968;150(4):655–65.

    Article  PubMed  CAS  Google Scholar 

  28. Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976;457(2):109–32.

    Article  PubMed  CAS  Google Scholar 

  29. Kim JC, Kim JD. Release property of temperature-sensitive liposome containing poly(N-isopropylacrylamide). Colloids Surf B. 2002;24(1):45–52.

    Article  CAS  Google Scholar 

  30. Mu X, Zhong Z. Preparation and properties of poly(vinyl alcohol)-stabilized liposomes. Int J Pharm. 2006;318(1–2):55–61.

    Article  PubMed  CAS  Google Scholar 

  31. Senior JH. Fate and behaviour of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3(2):123–93.

    PubMed  CAS  Google Scholar 

  32. Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev. 1998;32(1–2):3–17.

    Article  PubMed  CAS  Google Scholar 

  33. Nikolova AN, Jones MN. Effect of grafted PEG-2000 on the size and permeability of vesicles. Biochim Biophys Acta. 1996;1304(2):120–8.

    Article  PubMed  Google Scholar 

  34. Chonn A, Cullis PR. Ganglioside GM1 and hydrophilic polymers increase liposome circulation times by inhibiting the association of blood proteins. J Liposome Res. 1992;2(3):397–410.

    Article  CAS  Google Scholar 

  35. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029(1):91–7.

    Article  PubMed  CAS  Google Scholar 

  36. Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor-cell lines. Cancer Res. 1995;55(2):408–13.

    PubMed  CAS  Google Scholar 

  37. Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, et al. Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer. 2000;82(6):1223–32.

    Article  PubMed  CAS  Google Scholar 

  38. Mach RH, Smith CR, AlNabulsi I, Whirrett BR, Childers SR, Wheeler KT. Sigma-2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res. 1997;57(1):156–61.

    PubMed  CAS  Google Scholar 

  39. Colabufo NA, Berardi F, Contino M, Ferorelli S, Niso M, Perrone R, et al. Correlation between sigma2 receptor protein expression and histopathologic grade in human bladder cancer. Cancer Lett. 2006;237(1):83–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kashiwagi H, McDunn JE, Simon PO, Goedegebuure PS, Xu J, Jones L, et al. Selective sigma-2 ligands preferentially bind to pancreatic adenocarcinomas: applications in diagnostic imaging and therapy. Mol Cancer. 2007;6(48):48–59.

    Article  PubMed  Google Scholar 

  41. Spitzer D, Simon Jr PO, Kashiwagi H, Xu J, Zeng C, Vangveravong S, et al. Use of multifunctional sigma-2 receptor ligand conjugates to trigger cancer-selective cell death signaling. Cancer Res. 2012;72(1):201–9.

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Xu J, Xia X, Yang M, Vangveravong S, Chen J, et al. SV119-gold nanocage conjugates: a new platform for targeting cancer cells via sigma-2 receptors. Nanoscale. 2012;4(2):421–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported in part by NIH grants R01HL091828, R21CA128415 and R21CA155983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Huang, Y., Makhov, A.M. et al. Characterization of Spherulites as a Lipidic Carrier for Low and High Molecular Weight Agents. Pharm Res 30, 1525–1535 (2013). https://doi.org/10.1007/s11095-013-0990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0990-y

KEY WORDS

Navigation