Skip to main content

Advertisement

Log in

Comparison of Open-Flow Microperfusion and Microdialysis Methodologies When Sampling Topically Applied Fentanyl and Benzoic Acid in Human Dermis Ex Vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to compare two sampling methods—dermal Open-Flow Microperfusion (dOFM) and dermal Microdialysis (dMD) in an international joint experiment in a single-laboratory setting. We used human ex-vivo skin and sampled topically administered Fentanyl and Benzoic Acid. The second purpose was to provide guidance to researchers in choosing the most efficient method for a given penetrant and give suggestions concerning critical choices for successful dermal sampling.

Methods

The dOFM and dMD techniques are compared in equal set-ups using three probe-types (one dOFM probe and two dMD probe-types) in donor skin (n = 9) - 27 probes of each type sampling each penetrant in solutions applied in penetrationchambers glued to the skin surface over a time range of 20 h.

Results

Pharmacokinetic results demonstrated concordance between dOFM and dMD sampling technique under the given experimental conditions. The methods each had advantages and limitations in technical, practical and hands-on comparisons.

Conclusion

When planning a study of cutaneous penetration the advantages and limitations of each probe-type have to be considered in relation to the scientific question posed, the physico-chemical characteristics of the substance of interest, the choice of experimental setting e.g. ex vivo/in vivo and the analytical skills available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson C, Andersson T, Molander M. Ethanol absorption across human skin measured by in vivo microdialysis technique. Acta Derm Venereol. 1991;71:389–93.

    PubMed  CAS  Google Scholar 

  2. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24:1014–25.

    Article  PubMed  CAS  Google Scholar 

  3. Wang XD, Stenken JA. Microdialysis sampling membrane performance during in vitro macromolecule collection. Anal Chem. 2006;78:6026–34.

    Article  PubMed  CAS  Google Scholar 

  4. Carneheim C, Stahle L. Microdialysis of lipophilic compounds - a methodological study. Pharmacol Toxicol. 1991;69:378–80.

    Article  PubMed  CAS  Google Scholar 

  5. Gill C, Parkinson E, Church MK, Skipp P, Scott D, White AJ, et al. A qualitative and quantitative proteomic study of human microdialysate and the cutaneous response to injury. AAPS J. 2011;13:309–17.

    Article  PubMed  CAS  Google Scholar 

  6. Clough GF. Microdialysis of large molecules. AAPS J. 2005;7:E686–92.

    Article  PubMed  CAS  Google Scholar 

  7. Trickler W, Miller DW. Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J Pharm Sci. 2003;92:1419–27.

    Article  PubMed  CAS  Google Scholar 

  8. Ward KW, Medina SJ, Portelli ST, Doan KMM, Spengler MD, Ben MM, et al. Enhancement of in vitro and in vivo microdialysis recovery of SB-265123 using Intralipid (R) and Encapsin (R) as perfusates. Biopharm Drug Dispos. 2003;24:17–25.

    Article  PubMed  CAS  Google Scholar 

  9. Au WL, Skinner MF, Benfeldt E, Verbeeck RK, Kanfer I. Application of dermal microdialysis for the determination of bioavailability of clobetasol propionate applied to the skin of human subjects. Skin Pharmacol Physiol. 2012;25:17–24.

    Article  PubMed  CAS  Google Scholar 

  10. Holmgaard R, Nielsen JB, Benfeldt E. Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol. 2010;23:225–43.

    Article  PubMed  CAS  Google Scholar 

  11. Trajanoski Z, Brunner GA, Schaupp L, Ellmerer M, Wach P, Pieber TR, et al. Open-flow microperfusion of subcutaneous adipose tissue for on-line continuous ex vivo measurement of glucose concentration. Diabetes Care. 1997;20:1114–21.

    Article  PubMed  CAS  Google Scholar 

  12. Ellmerer M, Wach P, Trajanoski Z, Schaupp L, Regittnig W, Brunner GA, et al. Open flow microperfusion - Interstitial sampling of large molecules. New York: IEEE; 1997.

    Google Scholar 

  13. Ellmerer M, Schaupp L, Sendlhofer G, Wutte A, Brunner GA, Trajanoski Z, et al. Lactate metabolism of subcutaneous adipose tissue studied by open flow microperfusion. J Clin Endocrinol Metab. 1998;83:4394–401.

    Article  PubMed  CAS  Google Scholar 

  14. Ellmerer M, Schaupp L, Sendl-Hofer G, Wutte A, Wach P, Brunner GA, et al. Albumin concentration in interstitial fluid of human adipose tissue and skeletal muscle: application of open flow microperfusion and the no net flux calibration procedure. Diabetes. 1999;48:1250.

    Google Scholar 

  15. Schaupp L, Ellmerer M, Brunner GA, Wutte A, Sendlhofer G, Trajanoski Z, et al. Direct access to interstitial fluid in adipose tissue in humans by use of open-flow microperfusion. Am J Physiol Endocrinol Metabol. 1999;276:E401–8.

    CAS  Google Scholar 

  16. Ellmerer M, Schaupp L, Brunner GA, Sendlhofer G, Wutte A, Wach P, et al. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am J Physiol Endocrinol Metabol. 2000;278:E352–6.

    CAS  Google Scholar 

  17. Bodenlenz M, Schaupp LA, Druml T, Sommer R, Wutte A, Schaller HC, et al. Measurement of interstitial insulin in human adipose and muscle tissue under moderate hyperinsulinemia by means of direct interstitial access. Am J Physiol Endocrinol Metab. 2005;289:E296–300.

    Article  PubMed  CAS  Google Scholar 

  18. Bodenlenz M, Hoefferer C, Priedl J, Dragatin C, Korsatko S, Liebenberger L, et al. A novel certified dermal sampling system for efficient clinical research. J Inv Derm. 2011;131 Suppl 2:S44–S44

    Google Scholar 

  19. Ringe JD, Faber H, Bock O, Valentine S, Felsenberg D, Pfeifer M, et al. Transdermal fentanyl for the treatment of back pain caused by vertebral osteoporosis. Rheumatol Int. 2002;22:199–203.

    Article  PubMed  CAS  Google Scholar 

  20. Herrero-Beaumont G, Bjorneboe O, Richarz U. Transdermal fentanyl for the treatment of pain caused by rheumatoid arthritis. Rheumatol Int. 2004;24:325–32.

    Article  PubMed  CAS  Google Scholar 

  21. Rougier A, Rallis M, Krien P, Lotte C. In vivo percutaneous-absorption - a key role for stratum-corneum vehicle partitioning. Arch Dermatol Res. 1990;282:498–505.

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen JB, Nielsen F, Sorensen JA. In vitro percutaneous penetration of five pesticides-effects of molecular weight and solubility characteristics. Ann Occup Hyg. 2004;48:697–705.

    Article  PubMed  CAS  Google Scholar 

  23. van de Sandt JJ, van Burgsteden JA, Cage S, Carmichael PL, Dick I, Kenyon S, et al. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study. Regul Toxicol Pharmacol. 2004;39:271–81.

    Article  PubMed  Google Scholar 

  24. OECD-428. OECD guidelines for testing of chemicals, Skin absorption: In vitro method, 2004.

  25. Nielsen JB, Plasencia I, Sorensen JA, Bagatolli LA. Storage conditions of skin affect tissue structure and subsequent in vitro percutaneous penetration. Skin Pharmacol Physiol. 2011;24:93–102.

    Article  PubMed  CAS  Google Scholar 

  26. Bronaugh RL, Stewart RF, Simon M. Methods for in vitro percutaneous.absorption studies. 7. Use of excised human-skin. J Pharm Pharmaceut Sci. 1986;75:1094–7.

    CAS  Google Scholar 

  27. OECD. Guidance Document No.28 for the Conduct of Skin Absorption Studies. http://www.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2004)2&doclanguage=en2004)

  28. Groth L, Jorgensen A. In vitro microdialysis of hydrophilic and lipophilic compounds. Anal Chim Acta. 1997;355:75–83.

    Article  CAS  Google Scholar 

  29. Khramov AN, Stenken JA. Enhanced microdialysis recovery of some tricyclic antidepressants and structurally related drugs by cyclodextrin-mediated transport. Analyst. 1999;124:1027–33.

    Article  PubMed  CAS  Google Scholar 

  30. Sjogren S, Svensson C, Anderson C. Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis. Br J Dermatol. 2002;146:375–82.

    PubMed  CAS  Google Scholar 

  31. Nielsen JB. Efficacy of skin wash on dermal absorption: an in vitro study on four model compounds of varying solubility. Int Arch Occup Environ Heal. 2010;83:683–90.

    Article  Google Scholar 

  32. Nielsen JB, Sorensen JA, Nielsen F. The usual suspects - influence of physicochemical properties on lag time, skin deposition, and percutaneous penetration of nine model compounds. J Toxicol Environ Health A. 2009;72:315–23.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao YP, Liang XZ, Lunte CE. Comparison of recovery and delivery in vitro for calibration of microdialysis probes. Anal Chim Acta. 1995;316:403–10.

    Article  CAS  Google Scholar 

  34. Guy RH, Hadgraft J, Bucks DA. Transdermal drug delivery and cutaneous metabolism. Xenobiotica. 1987;17:325–43.

    Article  PubMed  CAS  Google Scholar 

  35. ECETOC. Percutaneous absorption, Vol. 20, European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, 1993, pp. 1–80.

  36. Larsen RH, Nielsen F, Sorensen JA, Nielsen JB. Dermal penetration of fentanyl: inter- and intraindividual variations. Pharmacol Toxicol. 2003;93:244–8.

    Article  PubMed  CAS  Google Scholar 

  37. Benfeldt E, Serup J, Menne T. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br J Dermatol. 1999;140:739–48.

    Article  PubMed  CAS  Google Scholar 

  38. McCleverty D, Lyons R, Henry B. Microdialysis sampling and the clinical determination of topical dermal bioequivalence. Int J Pharm. 2006;308:1–7.

    Article  PubMed  CAS  Google Scholar 

  39. Benfeldt E, Hansen SH, Volund A, Menne T, Shah VP. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method. J Invest Dermatol. 2007;127:170–8.

    Article  PubMed  CAS  Google Scholar 

  40. Tettey-Amlalo RN, Kanfer I, Skinner MF, Benfeldt E, Verbeeck RK. Application of dermal microdialysis for the evaluation of bioequivalence of a ketoprofen topical gel. Eur J Pharm Sci. 2009;36:219–25.

    Article  PubMed  CAS  Google Scholar 

  41. Holmgaard R, Benfeldt E, Bangsgaard N, Sorensen JA, Brosen K, Nielsen F, et al. Probe depth matters in dermal microdialysis sampling of topical penetration. An ex vivo study in human skin. Skin Pharmacol Physiol. 2012;25:9–16.

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen JB. Percutaneous penetration through slightly damaged skin. Arch Dermatol Res. 2005;296:560–7.

    Article  PubMed  Google Scholar 

  43. Ortiz PG, Hansen SH, Shah VP, Menne T, Benfeldt E. The effect of irritant dermatitis on cutaneous bioavailability of a metronidazole formulation, investigated by microdialysis and dermatopharmacokinetic method. Contact Dermatitis. 2008;59:23–30.

    Article  PubMed  CAS  Google Scholar 

  44. Krill SL, Knutson K, Higuchi WI. Ethanol effects on the stratum-corneum lipid phase-behavior. Biochim Biophys Acta. 1992;1112:273–80.

    Article  PubMed  CAS  Google Scholar 

  45. Obata Y, Takayama K, Maitani Y, Machida Y, Nagai T. Effect of ethanol on skin permeation of nonionized and ionized diclofenac. Int J Pharm. 1993;89:191–8.

    Article  CAS  Google Scholar 

  46. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9:165–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors thank the laboratory team in Denmark: Kim Brøsen and Flemming Nielsen for supervising the analysis and Birgitte Damby and Marie Mørk for technical assistance.

We also thank the laboratory team in Austria: Agnes Prasch and Anton Mautner for analysis and Katrin Tiffner, Simon Schwingenschuh, and Dina Tutkur for technical assistance during the experiment.

R.H. holds a research grant from The Danish Agency of Science Technology and Innovation. This study was supported in part by grants from Aage Bang’s Foundation, Else and Mogens Wedell-Wedellsborgs Foundation, Aase and Ejnar Danielsens Foundation, which are gratefully acknowledged.

The authors acknowledge the European COST-project ‘SkinBad (www.skinbad.eu)’ that facilitated the communication about the evaluation of in vivo methods for skin research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Holmgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmgaard, R., Benfeldt, E., Nielsen, J.B. et al. Comparison of Open-Flow Microperfusion and Microdialysis Methodologies When Sampling Topically Applied Fentanyl and Benzoic Acid in Human Dermis Ex Vivo . Pharm Res 29, 1808–1820 (2012). https://doi.org/10.1007/s11095-012-0705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0705-9

KEY WORDS

Navigation