Skip to main content

Advertisement

Log in

Transduction of Human Recombinant Proteins into Mitochondria as a Protein Therapeutic Approach for Mitochondrial Disorders

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Protein therapy is considered an alternative approach to gene therapy for treatment of genetic-metabolic disorders. Human protein therapeutics (PTs), developed via recombinant DNA technology and used for the treatment of these illnesses, act upon membrane-bound receptors to achieve their pharmacological response. On the contrary, proteins that normally act inside the cells cannot be developed as PTs in the conventional way, since they are not able to “cross” the plasma membrane. Furthermore, in mitochondrial disorders, attributed either to depleted or malfunctioned mitochondrial proteins, PTs should also have to reach the subcellular mitochondria to exert their therapeutic potential. Nowadays, there is no effective therapy for mitochondrial disorders. The development of PTs, however, via the Protein Transduction Domain (PTD) technology offered new opportunities for the deliberate delivery of human recombinant proteins inside eukaryotic subcellular organelles. To this end, mitochondrial disorders could be clinically encountered with the delivery of human mitochondrial proteins (engineered via recombinant DNA and PTD technologies) at specific intramitochondrial sites to exert their function. Overall, PTD-mediated Protein Replacement Therapy emerges as a suitable model system for the therapeutic approach for mitochondrial disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aa:

amino acids

CDS:

coding sequence

CNS:

central nervous system

COX:

Cytochrome c Oxidase

E. coli :

Escherichia coli

ERT:

Enzyme Replacement Therapy

FDA:

Food and Drug Administration

GFP:

Green Fluorescent Protein

GMOs:

genetically modified organisms

IBs:

inclusion bodies

IMS:

intermembrane space

IPTG:

isopropyl-beta-D-thiogalactopyranoside

L:

N-terminal Leader Peptide

LAD:

Lipoamide Dehydrogenase

mab:

monoclonal antibody

MPP:

Mitochondrial Processing Peptidase

mtDNA:

mitochondrial DNA

MTS:

Mitochondrial Targeting Signal Peptide

ΝABs:

Neutralizing Antibodies

nDNA:

muclear DNA

OXPHOS:

Oxidative Phosphorylation System

PDHC:

Pyruvate Dehydrogenase Complex

PEG:

poly(ethylene glycol)

PRT:

Protein Replacement Therapy

PTD:

Protein Transduction Domain

PTs:

Protein Therapeutics

ROS:

Reactive Oxygen Species

TAT:

a Protein Transduction Domain

TCA:

Tricarboxylic acid cycle

TFAM:

Mitochondrial Transcription Factor A

REFERENCES

  1. Betz UA, Farquhar R, Ziegelbauer K. Genomics: success or failure to deliver drug targets? Curr Opin Chem Biol. 2005;9(4):387–91.

    PubMed  CAS  Google Scholar 

  2. Banting FG et al. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12(3):141–6.

    PubMed  CAS  Google Scholar 

  3. Villa-Komaroff L et al. A bacterial clone synthesizing proinsulin. Proc Natl Acad Sci U S A. 1978;75(8):3727–31.

    PubMed  CAS  Google Scholar 

  4. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.

    PubMed  CAS  Google Scholar 

  5. Clarke JB. Mechanisms of adverse drug reactions to biologics. Handb Exp Pharmacol. 2010;196:453–74.

    PubMed  CAS  Google Scholar 

  6. Mossalam M, Dixon AS, Lim CS. Controlling subcellular delivery to optimize therapeutic effect. Ther Deliv. 2010;1(1):169–93.

    PubMed  CAS  Google Scholar 

  7. Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim Biophys Acta. 2009;1793(1):33–41.

    PubMed  CAS  Google Scholar 

  8. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60.

    PubMed  CAS  Google Scholar 

  9. Schatz G. The magic garden. Annu Rev Biochem. 2007;76:673–8.

    PubMed  CAS  Google Scholar 

  10. Yasukawa K et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal. 2009;2(84):ra47.

    PubMed  Google Scholar 

  11. DiMauro S. Mitochondrial DNA medicine. Biosci Rep. 2007;27(1–3):5–9.

    PubMed  CAS  Google Scholar 

  12. Zimmer C. Origins. On the origin of eukaryotes. Science. 2009;325(5941):666–8.

    PubMed  CAS  Google Scholar 

  13. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet. 2001;2(5):342–52.

    PubMed  CAS  Google Scholar 

  14. McFarland R, Taylor RW, Turnbull DM. Mitochondrial disease—its impact, etiology, and pathology. Curr Top Dev Biol. 2007;77:113–55.

    PubMed  CAS  Google Scholar 

  15. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol. 2010;5:297–348.

    PubMed  CAS  Google Scholar 

  16. Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283(5402):689–92.

    PubMed  CAS  Google Scholar 

  17. Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):R169–76.

    PubMed  CAS  Google Scholar 

  18. Giles RE et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715–9.

    PubMed  CAS  Google Scholar 

  19. Chinnery PF, Schon EA. Mitochondria. J Neurol Neurosurg Psychiatry. 2003;74(9):1188–99.

    PubMed  CAS  Google Scholar 

  20. Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet. 2008;40(12):1484–8.

    PubMed  CAS  Google Scholar 

  21. Dimauro S. A history of mitochondrial diseases. J Inherit Metab Dis. 2011;34(2):261–76

    Google Scholar 

  22. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med. 2002;347(8):576–80.

    PubMed  Google Scholar 

  23. Enns GM. The contribution of mitochondria to common disorders. Mol Genet Metab. 2003;80(1–2):11–26.

    PubMed  CAS  Google Scholar 

  24. Tatsuta T. Protein quality control in mitochondria. J Biochem. 2009;146(4):455–61.

    PubMed  CAS  Google Scholar 

  25. Diaz F. Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta. 2010;1802(1):100–10.

    PubMed  CAS  Google Scholar 

  26. DiMauro S, Hirano M, Schon EA. Approaches to the treatment of mitochondrial diseases. Muscle Nerve. 2006;34(3):265–83.

    PubMed  CAS  Google Scholar 

  27. Chacinska A et al. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44.

    PubMed  CAS  Google Scholar 

  28. Lee CM et al. The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem. 1999;274(30):20937–42.

    PubMed  CAS  Google Scholar 

  29. Fukui H et al. Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(35):14163–8.

    PubMed  CAS  Google Scholar 

  30. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 2008;18(4):165–73.

    PubMed  CAS  Google Scholar 

  31. Brown GK et al. Pyruvate dehydrogenase deficiency. J Med Genet. 1994;31(11):875–9.

    PubMed  CAS  Google Scholar 

  32. Rotig A. Genetic bases of mitochondrial respiratory chain disorders. Diabetes Metab. 2010;36(2):97–107.

    PubMed  CAS  Google Scholar 

  33. Barrientos A et al. Cytochrome oxidase in health and disease. Gene. 2002;286(1):53–63.

    PubMed  CAS  Google Scholar 

  34. Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life. 2008;60(9):557–68.

    PubMed  CAS  Google Scholar 

  35. Saraste M. Oxidative phosphorylation at the fin de siecle. Science. 1999;283(5407):1488–93.

    PubMed  CAS  Google Scholar 

  36. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001;106(1):18–26.

    PubMed  CAS  Google Scholar 

  37. Massa V et al. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet. 2008;82(6):1281–9.

    PubMed  CAS  Google Scholar 

  38. Mootha VK et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A. 2003;100(2):605–10.

    PubMed  CAS  Google Scholar 

  39. Ghezzi D et al. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am J Hum Genet. 2008;83(3):415–23.

    PubMed  CAS  Google Scholar 

  40. Weraarpachai W et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet. 2009;41(7):833–7.

    PubMed  CAS  Google Scholar 

  41. Zhu Z et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet. 1998;20(4):337–43.

    PubMed  CAS  Google Scholar 

  42. Papadopoulou LC et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet. 1999;23(3):333–7.

    PubMed  CAS  Google Scholar 

  43. Valnot I et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet. 2000;67(5):1104–9.

    PubMed  CAS  Google Scholar 

  44. Valnot I et al. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum Mol Genet. 2000;9(8):1245–9.

    PubMed  CAS  Google Scholar 

  45. Antonicka H et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet. 2003;72(1):101–14.

    PubMed  CAS  Google Scholar 

  46. Foltopoulou PF et al. Human recombinant mutated forms of the mitochondrial COX assembly Sco2 protein differ from wild-type in physical state and copper binding capacity. Mol Genet Metab. 2004;81(3):225–36.

    PubMed  CAS  Google Scholar 

  47. Koene S, Smeitink J. Mitochondrial medicine: entering the era of treatment. J Intern Med. 2009;265(2):193–209.

    PubMed  CAS  Google Scholar 

  48. McFarland R, Taylor RW, Turnbull DM. A neurological perspective on mitochondrial disease. Lancet Neurol. 2010;9(8):829–40.

    PubMed  CAS  Google Scholar 

  49. Shokolenko IN et al. The approaches for manipulating mitochondrial proteome. Environ Mol Mutagen. 2010;51(5):451–61.

    PubMed  CAS  Google Scholar 

  50. Wenz T et al. Emerging therapeutic approaches to mitochondrial diseases. Dev Disabil Res Rev. 2010;16(2):219–29.

    PubMed  Google Scholar 

  51. Yamada Y et al. Mitochondrial drug delivery and mitochondrial disease therapy—an approach to liposome-based delivery targeted to mitochondria. Mitochondrion. 2007;7(1–2):63–71.

    PubMed  CAS  Google Scholar 

  52. Moraes CT. Making the most of what you’ve got: optimizing residual OXPHOS function in mitochondrial diseases. EMBO Mol Med. 2009;1(8–9):357–9.

    PubMed  CAS  Google Scholar 

  53. Acin-Perez R et al. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med. 2009;1(8–9):392–406.

    PubMed  CAS  Google Scholar 

  54. Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochim Biophys Acta. 2011;1813(1):260–8.

    PubMed  CAS  Google Scholar 

  55. Schon EA et al. Therapeutic prospects for mitochondrial disease. Trends Mol Med. 2010;16(6):268–76.

    PubMed  CAS  Google Scholar 

  56. Cassidy-Stone A et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    PubMed  CAS  Google Scholar 

  57. Perales-Clemente E et al. Restoration of electron transport without proton pumping in mammalian mitochondria. Proc Natl Acad Sci U S A. 2008;105(48):18735–9.

    PubMed  CAS  Google Scholar 

  58. Tanaka M et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci. 2002;9(6 Pt 1):534–41.

    PubMed  CAS  Google Scholar 

  59. Chinnery PF et al. Peptide nucleic acid delivery to human mitochondria. Gene Ther. 1999;6(12):1919–28.

    PubMed  CAS  Google Scholar 

  60. Hirano M et al. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology. 2006;67(8):1458–60.

    PubMed  CAS  Google Scholar 

  61. Bredenoord AL, Pennings G, de Wert G. Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Hum Reprod Update. 2008;14(6):669–78.

    PubMed  CAS  Google Scholar 

  62. Craven L et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465(7294):82–5.

    PubMed  CAS  Google Scholar 

  63. D’Souza GG, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv. 2009;6(11):1135–48.

    PubMed  Google Scholar 

  64. Srivastava S, Moraes CT. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet. 2001;10(26):3093–9.

    PubMed  CAS  Google Scholar 

  65. Smith RA et al. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999;263(3):709–16.

    PubMed  CAS  Google Scholar 

  66. Weissig V, Torchilin VP. Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol. 2000;1(4):325–46.

    PubMed  CAS  Google Scholar 

  67. Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release. 2007;121(3):125–36.

    PubMed  CAS  Google Scholar 

  68. Rapoport M et al. TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Mol Ther. 2008;16(4):691–7.

    PubMed  CAS  Google Scholar 

  69. Foltopoulou PF et al. Intracellular delivery of full length recombinant human mitochondrial L-Sco2 protein into the mitochondria of permanent cell lines and SCO2 deficient patient’s primary cells. Biochim Biophys Acta. 2010;1802(6):497–508.

    PubMed  CAS  Google Scholar 

  70. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447–64.

    PubMed  CAS  Google Scholar 

  71. Katsura K et al. Combination therapy with transductive anti-death FNK protein and FK506 ameliorates brain damage with focal transient ischemia in rat. J Neurochem. 2008;106(1):258–70.

    PubMed  CAS  Google Scholar 

  72. Yousif LF et al. Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem. 2009;10(12):2081–8.

    PubMed  CAS  Google Scholar 

  73. Weissig V et al. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res. 1998;15(2):334–7.

    PubMed  CAS  Google Scholar 

  74. Yamada Y et al. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta. 2008;1778(2):423–32.

    PubMed  CAS  Google Scholar 

  75. Toogood PL. Mitochondrial drugs. Curr Opin Chem Biol. 2008;12(4):457–63.

    PubMed  CAS  Google Scholar 

  76. Frantz MC, Wipf P. Mitochondria as a target in treatment. Environ Mol Mutagen. 2010;51(5):462–75.

    PubMed  CAS  Google Scholar 

  77. Zhang E et al. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today. 2011;16(3-4):140–6.

    Google Scholar 

  78. Swartz JR. Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol. 2001;12(2):195–201.

    PubMed  CAS  Google Scholar 

  79. Tsumoto K et al. Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog. 2004;20(5):1301–8.

    PubMed  CAS  Google Scholar 

  80. Houdebine LM. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. 2009;32(2):107–21.

    PubMed  Google Scholar 

  81. Sodoyer R. Expression systems for the production of recombinant pharmaceuticals. BioDrugs. 2004;18(1):51–62.

    PubMed  CAS  Google Scholar 

  82. Tsiftsoglou AS. Biosimilars: the impact of their heterogeneity on regulatory approval. Nat Rev Drug Discov. 2007;6(3).

  83. Mellstedt H, Niederwieser D, Ludwig H. The challenge of biosimilars. Ann Oncol. 2008;19(3):411–9.

    PubMed  CAS  Google Scholar 

  84. Walsh G. Post-translational modifications of protein biopharmaceuticals. Drug Discov Today. 2010;15(17–18):773–80.

    PubMed  CAS  Google Scholar 

  85. Hamilton SR et al. Production of complex human glycoproteins in yeast. Science. 2003;301(5637):1244–6.

    PubMed  CAS  Google Scholar 

  86. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21(5):797–802.

    PubMed  CAS  Google Scholar 

  87. Joralemon MJ, McRae S, Emrick T. PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun (Camb). 2010;46(9):1377–93

    Google Scholar 

  88. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    PubMed  CAS  Google Scholar 

  89. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    PubMed  CAS  Google Scholar 

  90. Rapoport M, Lorberboum-Galski H. TAT-based drug delivery system—new directions in protein delivery for new hopes? Expert Opin Drug Deliv. 2009;6(5):453–63.

    PubMed  CAS  Google Scholar 

  91. Jahn EM, Schneider CK. How to systematically evaluate immunogenicity of therapeutic proteins—regulatory considerations. N Biotechnol. 2009;25(5):280–6.

    PubMed  CAS  Google Scholar 

  92. Barbosa MD, Celis E. Immunogenicity of protein therapeutics and the interplay between tolerance and antibody responses. Drug Discov Today. 2007;12(15–16):674–81.

    PubMed  CAS  Google Scholar 

  93. McKoy JM et al. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion. 2008;48(8):1754–62.

    PubMed  Google Scholar 

  94. Ioannou YA et al. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet. 2001;68(1):14–25.

    PubMed  CAS  Google Scholar 

  95. Wolbink GJ, Aarden LA, Dijkmans BA. Dealing with immunogenicity of biologicals: assessment and clinical relevance. Curr Opin Rheumatol. 2009;21(3):211–5.

    PubMed  Google Scholar 

  96. Weber CA et al. T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev. 2009;61(11):965–76.

    PubMed  CAS  Google Scholar 

  97. Carcao M, Lambert T. Prophylaxis in haemophilia with inhibitors: update from international experience. Haemophilia. 2010;16 Suppl 2:16–23.

    PubMed  CAS  Google Scholar 

  98. Descotes J. Immunotoxicity of monoclonal antibodies. MAbs. 2009;1(2):104–11.

    PubMed  Google Scholar 

  99. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24(1):1–8.

    PubMed  CAS  Google Scholar 

  100. Stephens DJ, Pepperkok R. The many ways to cross the plasma membrane. Proc Natl Acad Sci U S A. 2001;98(8):4295–8.

    PubMed  CAS  Google Scholar 

  101. Bickel H, Gerrard J, Hickmans EM. Influence of phenylalanine intake on phenylketonuria. Lancet. 1953;265(6790):812–3.

    PubMed  CAS  Google Scholar 

  102. Deduve C. From cytases to lysosomes. Fed Proc. 1964;23:1045-9.

    Google Scholar 

  103. Kang TS, Stevens RC. Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat. 2009;30(12):1591–610.

    PubMed  CAS  Google Scholar 

  104. Barton NW et al. Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324(21):1464–70.

    PubMed  CAS  Google Scholar 

  105. Desnick RJ. Enzyme replacement and enhancement therapies for lysosomal diseases. J Inherit Metab Dis. 2004;27(3):385–410.

    PubMed  CAS  Google Scholar 

  106. Goldsmith D, Kuhlmann M, Covic A. Through the looking glass: the protein science of biosimilars. Clin Exp Nephrol. 2007;11(3):191–5.

    PubMed  CAS  Google Scholar 

  107. Belting M, Sandgren S, Wittrup A. Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev. 2005;57(4):505–27.

    PubMed  CAS  Google Scholar 

  108. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748–58.

    PubMed  CAS  Google Scholar 

  109. Boado RJ et al. Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood-brain barrier delivery in the mouse. Biotechnol Bioeng. 2009;102(4):1251–8.

    PubMed  CAS  Google Scholar 

  110. van de Waterbeemd H et al. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6(2):151–65.

    PubMed  Google Scholar 

  111. Brasnjevic I et al. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol. 2009;87(4):212–51.

    PubMed  CAS  Google Scholar 

  112. Junutula JR et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32.

    PubMed  CAS  Google Scholar 

  113. Moolten FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science. 1970;169(940):68–70.

    PubMed  CAS  Google Scholar 

  114. McCarron PA et al. Antibody conjugates and therapeutic strategies. Mol Interv. 2005;5(6):368–80.

    PubMed  CAS  Google Scholar 

  115. Du H et al. The role of mannosylated enzyme and the mannose receptor in enzyme replacement therapy. Am J Hum Genet. 2005;77(6):1061–74.

    PubMed  CAS  Google Scholar 

  116. Garnacho C et al. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther. 2008;325(2):400–8.

    PubMed  CAS  Google Scholar 

  117. Francis JW et al. CuZn superoxide dismutase (SOD-1):tetanus toxin fragment C hybrid protein for targeted delivery of SOD-1 to neuronal cells. J Biol Chem. 1995;270(25):15434–42.

    PubMed  CAS  Google Scholar 

  118. Brasseur R, Divita G. Happy birthday cell penetrating peptides: Already 20years. Biochim Biophys Acta. 2010;1798(12):2177–81.

    Google Scholar 

  119. Vives E. Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?”. J Control Release. 2005;109(1–3):77–85.

    PubMed  CAS  Google Scholar 

  120. Snyder EL, Dowdy SF. Cell penetrating peptides in drug delivery. Pharm Res. 2004;21(3):389–93.

    PubMed  CAS  Google Scholar 

  121. Eguchi A, Dowdy SF. siRNA delivery using peptide transduction domains. Trends Pharmacol Sci. 2009;30(7):341–5.

    PubMed  CAS  Google Scholar 

  122. Hu JW et al. Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Peptides. 2009;30(9):1669–78.

    PubMed  CAS  Google Scholar 

  123. Wang YH et al. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells. Biochem Biophys Res Commun. 2006;346(3):758–67.

    PubMed  CAS  Google Scholar 

  124. van den Berg A, Dowdy SF. Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol. 2011;Apr 11.

  125. Schwarze SR et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285(5433):1569–72.

    PubMed  CAS  Google Scholar 

  126. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93.

    PubMed  CAS  Google Scholar 

  127. Fawell S et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A. 1994;91(2):664–8.

    PubMed  CAS  Google Scholar 

  128. Derossi D et al. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269(14):10444–50.

    PubMed  CAS  Google Scholar 

  129. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157(2):195–206.

    PubMed  CAS  Google Scholar 

  130. Kamada H et al. Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biol Pharm Bull. 2007;30(2):218–23.

    PubMed  CAS  Google Scholar 

  131. Snyder EL et al. Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Res. 2005;65(23):10646–50.

    PubMed  CAS  Google Scholar 

  132. Green I et al. Protein transduction domains: are they delivering? Trends Pharmacol Sci. 2003;24(5):213–5.

    PubMed  CAS  Google Scholar 

  133. Herce HD, Garcia AE. Cell penetrating peptides: how do they do it? J Biol Phys. 2007;33(5–6):345–56.

    PubMed  CAS  Google Scholar 

  134. Hallbrink M et al. Uptake of cell-penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide concentration. Biochim Biophys Acta. 2004;1667(2):222–8.

    PubMed  Google Scholar 

  135. Mueller J et al. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem. 2008;19(12):2363–74.

    PubMed  CAS  Google Scholar 

  136. Gump JM, June RK, Dowdy SF. Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. J Biol Chem. 2010;285(2):1500–7.

    PubMed  CAS  Google Scholar 

  137. Gros E et al. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta. 2006;1758(3):384–93.

    PubMed  CAS  Google Scholar 

  138. Dunkin CM et al. Molecular dynamics studies of transportan 10 (tp10) interacting with a POPC lipid bilayer. J Phys Chem B. 2011;115(5):1188–98.

    PubMed  CAS  Google Scholar 

  139. Tiriveedhi V, Butko P. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry. 2007;46(12):3888–95.

    PubMed  CAS  Google Scholar 

  140. Sarko D et al. The pharmacokinetics of cell-penetrating peptides. Mol Pharm. 2010;7(6):2224–31.

    Google Scholar 

  141. Banks WA, Robinson SM, Nath A. Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol. 2005;193(1):218–27.

    PubMed  CAS  Google Scholar 

  142. Cao G et al. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci. 2002;22(13):5423–31.

    PubMed  CAS  Google Scholar 

  143. Asoh S et al. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci U S A. 2002;99(26):17107–12.

    PubMed  CAS  Google Scholar 

  144. Cai B et al. TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol. 2011;227(1):224–31.

    PubMed  CAS  Google Scholar 

  145. Wang H et al. PEGlated magnetic polymeric liposome anchored with TAT for delivery of drugs across the blood-spinal cord barrier. Biomaterials. 2010;31(25):6589–96.

    PubMed  CAS  Google Scholar 

  146. Kwon YM et al. PTD-modified ATTEMPTS system for enhanced asparaginase therapy: a proof-of-concept investigation. J Control Release. 2008;130(3):252–8.

    PubMed  CAS  Google Scholar 

  147. Dutot L et al. Glycosylated cell-penetrating peptides and their conjugates to a proapoptotic peptide: preparation by click chemistry and cell viability studies. J Chem Biol. 2009;3(2):51–65.

    Google Scholar 

  148. Vocero-Akbani A, Lissy NA, Dowdy SF. Transduction of full-length Tat fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death. Methods Enzymol. 2000;322:508–21.

    PubMed  CAS  Google Scholar 

  149. Flinterman M et al. Delivery of therapeutic proteins as secretable TAT fusion products. Mol Ther. 2009;17(2):334–42.

    PubMed  CAS  Google Scholar 

  150. Liu BR et al. Cellular internalization of quantum dots noncovalently conjugated with arginine-rich cell-penetrating peptides. J Nanosci Nanotechnol. 2010;10(10):6534–43.

    PubMed  CAS  Google Scholar 

  151. Morris MC et al. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell. 2008;100(4):201–17.

    PubMed  CAS  Google Scholar 

  152. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975;67(3):835–51.

    PubMed  CAS  Google Scholar 

  153. Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res. 2007;24(1):17–27.

    PubMed  CAS  Google Scholar 

  154. Vyas PM, Payne RM. TAT opens the door. Mol Ther. 2008;16(4):647–8.

    PubMed  CAS  Google Scholar 

  155. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272(25):16010–7.

    PubMed  CAS  Google Scholar 

  156. Ryu J et al. Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Mol Cells. 2004;17(2):353–9.

    PubMed  CAS  Google Scholar 

  157. Snyder EL, Dowdy SF. Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr Opin Mol Ther. 2001;3(2):147–52.

    PubMed  CAS  Google Scholar 

  158. Yoshikawa T et al. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus. J Mol Biol. 2008;380(5):777–82.

    PubMed  CAS  Google Scholar 

  159. Zhang XY et al. Cellular uptake and lysosomal delivery of galactocerebrosidase tagged with the HIV Tat protein transduction domain. J Neurochem. 2008;104(4):1055–64.

    PubMed  CAS  Google Scholar 

  160. Arakawa M et al. Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci. 2007;80(22):2076–84.

    PubMed  CAS  Google Scholar 

  161. Soane L, Fiskum G. TAT-mediated endocytotic delivery of the loop deletion Bcl-2 protein protects neurons against cell death. J Neurochem. 2005;95(1):230–43.

    PubMed  CAS  Google Scholar 

  162. Sugita T et al. Comparative study on transduction and toxicity of protein transduction domains. Br J Pharmacol. 2008;153(6):1143–52.

    PubMed  CAS  Google Scholar 

  163. Saar K et al. Cell-penetrating peptides: a comparative membrane toxicity study. Anal Biochem. 2005;345(1):55–65.

    PubMed  CAS  Google Scholar 

  164. Jarver P, Mager I, Langel U. In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci. 2010;31(11):528–35.

    PubMed  Google Scholar 

  165. Kilk K et al. Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology. 2009;265(3):87–95.

    PubMed  CAS  Google Scholar 

  166. Waldeck W et al. Transporter molecules influence the gene expression in HeLa cells. Int J Med Sci. 2009;6(1):18–27.

    PubMed  CAS  Google Scholar 

  167. Eavri R, Lorberboum-Galski H. A novel approach for enzyme replacement therapy. The use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. J Biol Chem. 2007;282(32):23402–9.

    PubMed  CAS  Google Scholar 

  168. Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Mol Biosyst. 2010;6(4):628–40.

    PubMed  CAS  Google Scholar 

  169. Yukawa H et al. Transduction of cell-penetrating peptides into induced pluripotent stem cells. Cell Transplant. 2010;19(6):901–9.

    PubMed  Google Scholar 

  170. Johnson RM, Harrison SD, Maclean D. Therapeutic applications of cell-penetrating peptides. Methods Mol Biol. 2010;683:535–51.

    Google Scholar 

  171. Verdurmen WP, Brock R. Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci. 2011;32(2):116–24.

    Google Scholar 

  172. Del Gaizo V, MacKenzie JA, Payne RM. Targeting proteins to mitochondria using TAT. Mol Genet Metab. 2003;80(1–2):170–80.

    PubMed  Google Scholar 

  173. Rayapureddi JP et al. TAT fusion protein transduction into isolated mitochondria is accelerated by sodium channel inhibitors. Biochemistry. 2010;49(44):9470–9.

    PubMed  CAS  Google Scholar 

  174. Del Gaizo V, Payne RM. A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther. 2003;7(6):720–30.

    PubMed  Google Scholar 

  175. Khan SM, Bennett Jr JP. Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr. 2004;36(4):387–93.

    PubMed  CAS  Google Scholar 

  176. Kaufman BA et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell. 2007;18(9):3225–36.

    PubMed  CAS  Google Scholar 

  177. Iyer S et al. Recombinant mitochondrial transcription factor A with N-terminal mitochondrial transduction domain increases respiration and mitochondrial gene expression. Mitochondrion. 2009;9(3):196–203.

    PubMed  CAS  Google Scholar 

  178. Thomas RR et al. Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion. 2010;11:108–18.

    PubMed  Google Scholar 

  179. Shokolenko IN et al. TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst). 2005;4(4):511–8.

    CAS  Google Scholar 

  180. Rapoport M et al. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med. 2011;89(2):161–70.

    PubMed  CAS  Google Scholar 

  181. Williams JC et al. Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase “assembly” protein. J Biol Chem. 2005;280(15):15202–11.

    PubMed  CAS  Google Scholar 

  182. Matoba S et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.

    PubMed  CAS  Google Scholar 

  183. Yang H et al. Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2. Hum Mol Genet. 2010;19(1):170–80.

    PubMed  CAS  Google Scholar 

  184. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88(2):223–33.

    PubMed  CAS  Google Scholar 

  185. Futaki S et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–40.

    PubMed  CAS  Google Scholar 

  186. Pooga M et al. Cellular translocation of proteins by transportan. Faseb J. 2001;15(8):1451–3.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We would like to thank Mrs. Elena Kounadi (University Studio Press, Thessaloniki, Greece) for her artistic assistance and Mr. Ioannis D. Bonovolias, PhD student, for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lefkothea C. Papadopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulou, L.C., Tsiftsoglou, A.S. Transduction of Human Recombinant Proteins into Mitochondria as a Protein Therapeutic Approach for Mitochondrial Disorders. Pharm Res 28, 2639–2656 (2011). https://doi.org/10.1007/s11095-011-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0546-y

KEY WORDS

Navigation