Skip to main content
Log in

An Acetate Prodrug of a Pyridinol-Based Vitamin E Analogue

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate of an approach to stabilize a novel pyridinol based α–tocopherol analogue (1) as a prodrug by acetylation of its phenol moiety.

Methods

Biochemical indicators of oxidative stress in mitochondria were utilized to gain insight into the cytoprotective mechanism(s) of compound 1 acetate. Oxygen free radical scavenging activity was measured using DCF probe in a cultured cell model system that had been placed under oxidative stress. Lipid peroxidation was examined both in a cell-free system and in oxidatively stressed cultured cells. The bioenergetic parameters of mitochondria were evaluated by measuring mitochondrial membrane potential (Δψm) and the MPT.

Results

The present results suggest strongly that the antioxidant efficacy of compound 1 can be improved by using it as a prodrug. The tested prodrug has shown to be activated as a function of time, presumably due to susceptibility to enzymatic hydrolysis, and exhibits an antioxidant effect in time-dependent manner, providing a compound that is more effective than α-tocopherol acetate with regard to all protective properties studied.

Conclusions

An effective approach to stabilize compound 1 was realized by using its acetate as a prodrug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAPH:

2,2’-azobis-(2-amidinopropane) dihydrochloride

BSO:

L-buthionine-(S, R)-sulfoximine

C11 BODIPY581/591 :

4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a, 4a-diaza-s-indacene-3-propionic acid

Calcein AM:

calcein acetoxymethyl

DCF:

dichlorofluorescein

DCFH-DA:

dichlorodihydrofluorescein diacetate

DEM:

diethyl maleate

DLPC:

1, 2-dilinoleoylphosphatidylcholine

DMSO:

dimethylsulfoxide

EBS:

Eagle’s balanced salt

FBS:

fetal bovine serum

FCCP:

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

FRDA:

Friedreich’s ataxia

GSH:

glutathione

HSSB:

Hanks’ balanced salt solution buffer

MEM:

Eagle’s minimal essential medium

ROS:

reactive oxygen species

SOPC:

1-stearoyl-2-oleoyl-phosphatidylcholine

TMRM:

tetramethylrhodamine methyl ester

α-TOH:

α-tocopherol

βFGF:

basic fibroblast growth factor

REFERENCES

  1. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  PubMed  CAS  Google Scholar 

  2. Graier WF, Frieden M, Malli R. Mitochondria and Ca2+ signaling: old guest, new functions. Eur J Phys. 2007;455:375–96.

    Article  CAS  Google Scholar 

  3. Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria different modes of dying. Biochemistry (Moscow). 2005;70:231–9.

    Article  CAS  Google Scholar 

  4. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  PubMed  CAS  Google Scholar 

  6. Fridovich I. Fundamental aspect of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci. 1999;893:13–8.

    Article  PubMed  CAS  Google Scholar 

  7. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32:595–603.

    Article  PubMed  CAS  Google Scholar 

  8. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman H. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989;73:334–9.

    PubMed  CAS  Google Scholar 

  9. Armstrong JS, Khdour OM, Hecht SM. Does oxidative stress contribute to the pathology of Friedreich’s Ataxia? A radical question. FASEB J. 2010;24:2152–63.

    Article  PubMed  CAS  Google Scholar 

  10. Markesbery WR, Carney JM. Oxidative stress in Alzheimer’s disease. Brain Pathol. 1999;9:133–46.

    Article  PubMed  CAS  Google Scholar 

  11. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3:205–14.

    Article  CAS  Google Scholar 

  12. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005;233:145–62.

    Article  PubMed  CAS  Google Scholar 

  13. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  PubMed  CAS  Google Scholar 

  14. DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 2008;31:91–123.

    Article  PubMed  CAS  Google Scholar 

  15. Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Hass R. A modern approach to the treatment of mitochondrial disease. Curr Treatm Opt Neurol. 2009;11:414–30.

    Article  Google Scholar 

  16. Taylor RW, Chinnery PF, Clark KM, Lightowlers RN, Turnbull DM. Treatment of mitochondrial disease. J Bioenerg Biomembr. 1997;29:195–205.

    Article  PubMed  CAS  Google Scholar 

  17. Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother. 2005;59:380–7.

    Article  PubMed  CAS  Google Scholar 

  18. Lucarini M, Pedulli GF. Bond dissociation enthalpy of α–tocopherol and other phenolic antioxidants. J Org Chem. 1994;59:5063–70.

    Article  CAS  Google Scholar 

  19. Burton GW, Ingold KU. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res. 1986;19:194–201.

    Article  CAS  Google Scholar 

  20. Ouahchi K, Arita M, Kayden H, Hentati F, Ben Hamida M, Sokol R, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995;9:141–5.

    Article  PubMed  CAS  Google Scholar 

  21. Prat DA, DiLabio GA, Brigati G, Pedulli GF, Valgimigli LJ. 5-Pyrimidinols: Novel chain-breaking antioxidants more effective than phenols. J Am Chem Soc. 2001;123:4625–6.

    Article  Google Scholar 

  22. Wijtmans M, Pratt DA, Brinkhorst J, Serwa R, Valgimigli L, Pedulli GF, et al. Synthesis and reactivity of some 6-substituted-2,4-dimethyl-3-pyridinols, a novel class of chain-breaking antioxidants. J Org Chem. 2004;69:9215–23.

    Article  PubMed  CAS  Google Scholar 

  23. Wijtmans M, Pratt DA, Valgimigli L, DiLabio GA, Pedulli GF, Porter NA. 6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants. Angew Chem Int Ed. 2003;42:4370–3.

    Article  CAS  Google Scholar 

  24. Lu J, Khdour OM, Armstrong JS, Hecht SM. Design, synthesis and evaluation of an α-tocopherol analogue as a mitochondrial antioxidant. Bioorg Med Chem. 2010;18:7628–38.

    Article  PubMed  CAS  Google Scholar 

  25. Albert A. Chemical aspects of selective toxicity. Nature. 1958;182:421–3.

    Article  PubMed  CAS  Google Scholar 

  26. LeBel CP, Ishiropoulos H, Bondy SC. Evaluation of the probe 2′,7′- dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31.

    Article  PubMed  CAS  Google Scholar 

  27. Chua YL, Zhang D, Boelsterli U, Moore PK, Whiteman M, Armstrong JS. Oltipraz-induced phase 2 enzyme response conserved in cells lacking mitochondrial DNA. Biochem Biophys Res Commun. 2005;337:375–81.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang D, Lu C, Whiteman M, Chance B, Armstrong JS. The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction. J Biol Chem. 2008;283:3476–86.

    Article  PubMed  CAS  Google Scholar 

  29. Lu C, Armstrong JS. Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Biochem Biophys Res Commun. 2007;363:572–7.

    Article  PubMed  CAS  Google Scholar 

  30. Pap EHW, Drumman GPC, Winter VJ, Kooij TWA, Rijken P, Wirtz KWA, et al. Ratio-fluorescence microscopy of lipid peroxidation in living cells using C11-BODIPY581/591. FEBS Lett. 1999;453:278–82.

    Article  PubMed  CAS  Google Scholar 

  31. Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA. C11-BODIPY (581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radic Biol Med. 2002;33:473–90.

    Article  PubMed  CAS  Google Scholar 

  32. Wu GS, Stein RA, Mead FJ. Autoxidation of phosphatidylcholine liposomes. Lipids. 1982;17:403–13.

    Article  PubMed  CAS  Google Scholar 

  33. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077–99.

    Article  PubMed  CAS  Google Scholar 

  34. Ehrenberg B, Montana V, Wei M-D, Wuskell JP, Loew LM. Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J. 1988;53:785–94.

    Article  PubMed  CAS  Google Scholar 

  35. Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 1999;765:725–54.

    Article  Google Scholar 

  36. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med. 2004;37:1511–26.

    Article  PubMed  CAS  Google Scholar 

  37. Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols: increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994;269:16638–42.

    PubMed  CAS  Google Scholar 

  38. Armstrong JS, Jones DP. Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J. 2002;16:1263–5.

    PubMed  CAS  Google Scholar 

  39. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139–76.

    PubMed  Google Scholar 

  40. Ingold KU, Burton GW, Foster DO, Zuker M, Hughes L, Lacelle S, et al. A new vitamin E analogue more active than α-tocopherol in the rat curative myopathy bioassay. FEBS Lett. 1986;205:117–20.

    Article  PubMed  CAS  Google Scholar 

  41. Iuliano L, Pedersen JZ, Camastra C, Bello V, Ceccarelli S, Violi F. Protection of low density lipoprotein oxidation by the antioxidant agent IRFI005, a new synthetic hydrophilic vitamin E analogue. Free Radic Biol Med. 1999;26:858–68.

    Article  PubMed  CAS  Google Scholar 

  42. Manfredini S, Vertuani S, Manfredi B, Rossoni G, Calviello G, Palozza P. Novel antioxidant agents deriving from molecular combinations of vitamins C and E analogues: 3,4-dihydroxy-5(R)-[2(R, S)-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2(R, S)-yl-methyl)-[1,3]-dioxolan-4(S)-yl]-5H-furan-2-one and 3-O-octadecyl derivatives. Bioorg Med Chem. 2000;8:2791–801.

    Article  PubMed  CAS  Google Scholar 

  43. Nam TG, Rector CL, Kim HY, Sonnen AF, Meyer R, Nau WM, et al. Tetrahydro-1,8-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins. J Am Chem Soc. 2007;129:10211–9.

    Article  PubMed  CAS  Google Scholar 

  44. Palozza P, Simone R, Picci N, Buzzoni L, Ciliberti N, Natangelo A, et al. Design, synthesis, and antioxidant potency of novel alpha-tocopherol analogues in isolated membranes and intact cells. Free Radic Biol Med. 2008;44:1452–64.

    Article  PubMed  CAS  Google Scholar 

  45. Mahdavian E, Sangsura S, Landry G, Eytina J, Salvotore BA. A novel synthesis of tocopheryl amines and amide. Tetrahedon Lett. 2009;50:19–21.

    Article  CAS  Google Scholar 

  46. Griffith OW, Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979;254:7558–60.

    PubMed  CAS  Google Scholar 

  47. Jauslin ML, Wirth T, Meier T, Schoumacher F. A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum Mol Genet. 2002;11:3055–63.

    Article  PubMed  CAS  Google Scholar 

  48. Tirmenstein MA, Nicholls-Grzemski FA, Zhang JG, Fariss MW. Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chem Biol Interact. 2000;127:201–17.

    Article  PubMed  CAS  Google Scholar 

  49. Van Ginkel G, Sevanian A. Lipid peroxidation-induced membrane structural alteration. Methods Enzymol. 1994;233:273–80.

    Article  PubMed  Google Scholar 

  50. Kanno T, Sato EF, Utsumi T, Yoshioka T, Inone M, Utsumi K. Oxidative stress underlies the mechanism for Ca2+ -induced permeability transition of mitochondria. Free Radic Res. 2004;38:27–35.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported in part by a research grant from the Friedreich’s Ataxia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney M. Hecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khdour, O.M., Lu, J. & Hecht, S.M. An Acetate Prodrug of a Pyridinol-Based Vitamin E Analogue. Pharm Res 28, 2896–2909 (2011). https://doi.org/10.1007/s11095-011-0491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0491-9

KEY WORDS

Navigation